Главная · Электродвигатели · Однородные магнитные линии. Однородное и неоднородное магнитные поля

Однородные магнитные линии. Однородное и неоднородное магнитные поля

Магнитное поле. Однородное и неоднородное магнитное поле

Задание #1

Вопрос:

В Исландии и Франции морской компас начали использовать в 12-13 веках. Магнитный брусок закрепляли в центре деревянного креста, затем эту конструкцию помещали в воду, и крест, повернувшись, устанавливался в направлении север-юг. Каким полюсом магнитный брусок повернётся к северному магнитному полюсу Земли?

1) Среди ответов нет правильного

2) Северным

4) Для ответа на вопрос не хватает данных

Задание #2

Вопрос:

Какое вещество совсем не притягивается магнитом?

Выберите один из 4 вариантов ответа:

Задание #3

Вопрос:

Внутри стенового покрытия проложен изолированный провод. Как обнаружить местонахождения провода не нарушая стенового покрытия?

Выберите один из 4 вариантов ответа:

1) Местонахождение провода нельзя определить, не ломая стенового покрытия.

2) Используя рентгеновское зрение

3) Осветить стены. Усиление света укажет на нахождение провода.

4) Поднести к стене магнитную стрелку. Проводник с током и стрелка будут взаимодействовать.

Задание #4

Вопрос:

Можно ли пользоваться компасом на Луне для ориентирования на местности?

Выберите один из 4 вариантов ответа:

2) Можно, но только на равнинах

3) Можно, но только в кратерах

Задание #5

Вопрос:

При каком условии магнитное поле появляется вокруг проводника?

Выберите один из 4 вариантов ответа:

1) Когда в проводнике возникает электрический ток.

2) Когда проводник нагревают.

4) Когда проводник складывают вдвое.

Задание #6

Вопрос:

Магнитные линии - это воображаемые линии, вдоль которых расположились бы маленькие

Выберите один из 4 вариантов ответа:

1) магнитные стрелки, помещенные в магнитном поле

2) Среди ответов нет правильного

3) положительно заряженные частицы, помещенные в магнитное поле

4) отрицательно заряженные частицы, помещенные в магнитное поле

Задание #7

Вопрос:

Если в разных точках магнитного поля на магнитную стрелку действуют одинаковые силы, то такое поле называют

Выберите один из 4 вариантов ответа:

1) равномерным

2) неоднородным

3) однородным

4) вихревым

Задание #8

Вопрос:

Магнит создает вокруг себя магнитное поле. Где будет проявляться действие этого поля наиболее сильно?

Выберите один из 4 вариантов ответа:

1) Действие магнитного поля проявляется равномерно в каждой точке магнита.

2) В центре магнита.

3) Среди ответов нет правильного

4) Около полюсов магнита.

Задание #9

Вопрос:

Что следует сделать, чтобы стержень из закаленной стали намагнитился, т.е. сам стал постоянным магнитом?

Выберите один из 4 вариантов ответа:

1) Поместить в сильное магнитное поле

2) Натереть шерстью

3) Поместить в воду

4) Поднести к заряженному телу

Задание #10

Вопрос:

Какой полюс появится у заостренного конца гвоздя, если к его шляпке приблизить южный полюс магнита?

Выберите один из 4 вариантов ответа:

1) Нельзя определить

3) Северный

4) Среди ответов нет правильного

Если линии располагаются параллельно друг другу, их густота одинакова, то в этом случае говорят, что магнитное поле однородно . Если, наоборот, этого не выполняется, т.е. густота разная, линии искривлены, то такое поле будет называться неоднородным . В заключение урока хотелось бы обратить ваше внимание на следующие рисунки.

Рис. 6. Неоднородное магнитное поле

Во-первых, теперь мы уже знаем, чтомагнитные линии можно изображать стрелками. И рисунок представляет именно неоднородное магнитное поле. Густота в разных местах разная, значит, силовое воздействие этого поля на магнитную стрелку будет разным.

На следующем рисунке представлено уже однородное поле. Линии направлены в одну сторону, и их густота одинакова.

Рис. 7. Однородное магнитное поле

Однородное магнитное поле – это поле, которое встречается внутри катушки с большим числом витков или внутри прямолинейного, полосового магнита. Магнитное поле вне полосового магнита или то, что мы сегодня наблюдали на уроке, это поле неоднородное. Чтобы все это до конца усвоить, давайте посмотрим на таблицу.

Список дополнительной литературы:

Белкин И.К. Электрическое и магнитное поля // Квант. - 1984. - № 3. - С. 28-31. Кикоин А.К. Откуда берется магнетизм? // Квант. - 1992. - № 3. - С. 37-39,42 Леенсон И. Загадки магнитной стрелки // Квант. - 2009. - № 3. - С. 39-40. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. – М., 1974

Тема: Электромагнитные явления

Ерюткин Евгений Сергеевич

Опыт Эрстеда

В ходе урока мы определим взаимосвязь электрического тока и направления его магнитных линий. Для поиска закономерностей необходимо обратиться к опыту, который впервые был проведен в 1820 году датским ученым Эрстедом.

Рис. 1. Схема опыта Эрстеда

Обратимся к схеме опыта. В двух штативах был укреплен прямой проводник, подключенный к источнику тока. Под проводником располагалась магнитная стрелка, когда протекал электрический ток, магнитная стрелка располагалась перпендикулярно проводнику с током. Следующий эксперимент с изменением полярности. Электрический ток протекает в противоположную сторону. В результате направление тока в проводнике изменилось. Что произошло с магнитной стрелкой? Магнитная стрелка развернулась на 180 °. Обратите внимание, теперь южный полюс стрелки указывал туда, куда указывал северный, а северный – в противоположном направлении.

Из курса физики 8 класса вы знаете, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создаётся электронами, направленно движущимися вдоль проводника. Магнитное поле возникает и в том случае, когда ток проходит через раствор электролита, где носителями зарядов являются положительно и отрицательно заряженные ионы, движущиеся навстречу друг другу.

Поскольку электрический ток - это направленное движение заряженных частиц, то можно сказать, что магнитное поле создаётся движущимися заряженными частицами, как положительными, так и отрицательными.

Напомним, что, согласно гипотезе Ампера, в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи.

На рисунке 85 показано, что в постоянных магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.

Рис. 85. Иллюстрация гипотезы Ампера

Для наглядного представления магнитного поля используются магнитные линии (их называют также линиями магнитного поля) 1 . Напомним, что магнитные линии - это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещённые в магнитное поле.

Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле.

На рисунке 86 показано, что магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещённой в эту точку.


Рис. 86. В любой точке магнитной линии касательная к ней совпадает с осью магнитной стрелки, помещённой в эту точку

Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.

Из рисунка 86 видно, что за направление магнитной линии в какой-либо её точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещённой в эту точку.

В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее. Например, поле, изображённое на рисунке 87, слева сильнее, чем справа.

Рис. 87. Магнитные линии ближе друг к другу в тех местах, где магнитное поле сильнее

Таким образом, по картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких - с меньшей).

Рассмотрим картину линий магнитного поля постоянного полосового магнита (рис. 88). Из курса физики 8 класса вы знаете, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.

Рис. 88. Картина магнитного поля постоянного полосового магнита

Рис. 89. Магнитные линии магнитного поля,созданного прямолинейным проводником с током

Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на неё поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.

Таким образом, сила, с которой поле полосового магнита действует на помещённую в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

Ещё одним примером неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током. На рисунке 89 изображён участок такого проводника, расположенный перпендикулярно плоскости чертежа. Кружочком обозначено сечение проводника. Точка означает, что ток направлен из-за чертежа к нам, как будто мы видим остриё стрелы, указывающей направление тока (ток, направленный от нас за чертёж, обозначают крестиком, как будто мы видим хвостовое оперение стрелы, направленной по току).

Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.

В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

На рисунке 90 показано магнитное поле, возникающее внутри соленоида - проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Из этого рисунка видно, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.

Рис. 90. Магнитное поле соленоида

Однородным является также поле внутри постоянного полосового магнита в центральной его части (см. рис. 88).

Для изображения магнитного поля пользуются следующим приёмом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертёж, то их изображают крестиками (рис. 91, а), а если из-за чертежа к нам - то точками (рис. 91, б). Как и в случае с током, каждый крестик - это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка - остриё стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).

Рис. 91. Линии магнитного поля, направленные перпендикулярно плоскости чертежа: а - от наблюдателя; б - к наблюдателю

Вопросы

  1. Что является источником магнитного поля?
  2. Чем создаётся магнитное поле постоянного магнита?
  3. Что такое магнитные линии? Что принимают за их направление в какой-либо её точке?
  4. Как располагаются магнитные стрелки в магнитном поле, линии которого прямолинейны; криволинейны?
  5. 0 чём можно судить по картине линий магнитного поля?
  6. Какое магнитное поле - однородное или неоднородное - образуется вокруг полосового магнита; вокруг прямолинейного проводника с током; внутри соленоида, длина которого значительно больше его диаметра?
  7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля; однородного магнитного поля?
  8. Чем отличается расположение магнитных линий в неоднородном и однородном магнитных полях?

Упражнение 31

1 В § 37 будет дано более точное название и определение этих линий.