Главная · Скрытая проводка · Стеклотекстолит для печатных плат. Общие сведения, история, технологии

Стеклотекстолит для печатных плат. Общие сведения, история, технологии

Печатная плата (англ. printed circuit board, PCB, или printed wiring board, PWB) — пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой.
В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).

В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на:

  • односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика.
  • двухсторонние (ДПП): два слоя фольги.
  • многослойные (МПП): фольга не только на двух сторонах платы, но и во внутренних слоях диэлектрика. Многослойные печатные платы получаются склеиванием нескольких односторонних или двухсторонних плат

По мере роста сложности проектируемых устройств и плотности монтажа, увеличивается количество слоёв на платах]. По свойствам материала основы:

  • Жёсткие
  • Теплопроводные
  • Гибкие

Печатные платы могут иметь свои особенности, в связи с их назначением и требованиями к особым условиям эксплуатации (например, расширенный диапазон температур) или особенности применения (например, платы для приборов, работающих на высоких частотах).
Материалы Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс. Также основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору. В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д), и керамика.
Гибкие платы делают из полиимидных материалов, таких как каптон.

Гетинакс применяют при средних условиях эксплуатации.

  • Достоинства: дешево, меньше сверлить, интеграция в нагретом состоянии.
  • Недостатки: может расслаиваться при механической обработке, может впитывать влагу, понижает свои диэлектрические свойства и коробится.

Лучше использовать гетинакс облицованный гольваностойкой фольгой.

Фольгированный стеклотекстолит - получают прессованием, пропитывание эпоксидной смолой слоев стеклоткани и приклеенной поверхностной пленки ВФ-4Р медной электротехнической фольги толщиной 35-50 микрон.

  • Достоинства: хорошие диэлектрические свойства.
  • Недостатки: дорого в 1,5-2 раза.

Применяют для односторонних и двусторонних плат. Для многослойных ПП применяются тонкие фольгированные диэлектрики ФДМ-1, ФДМ-2 и полугибкие РДМЭ-1. Основой таких материалов служит пропитывающий эпоксидный слой стеклоткани. Толщина электротехнической меди гольваностойкой фольги 35,18 микрон. Для изготовления многослойных ПП используется прокладочная ткань, например СПТ-2 толщиной 0,06- 0,08 мм, является нефольгированным материалом.

Изготовление Изготовление ПП возможно аддитивным или субтрактивным методом. В аддитивном методе проводящий рисунок формируется на нефольгированном материале путём химического меднения через предварительно нанесённую на материал защитную маску. В субтрактивном методе проводящий рисунок формируется на фольгированном материале путём удаления ненужных участков фольги. В современной промышленности применяется исключительно субтрактивный метод.
Весь процесс изготовления печатных плат можно разделить на четыре этапа:

  • Изготовление заготовки (фольгированного материала).
  • Обработка заготовки с целью получения нужных электрического и механического вида.
  • Монтаж компонентов.
  • Тестирование.

Часто под изготовлением печатных плат понимают только обработку заготовки (фольгированного материала). Типовой процесс обработки фольгированного материала состоит из нескольких этапов: сверловка переходных отверстий, получение рисунка проводников путем удаления излишков медной фольги, металлизация отверстий, нанесение защитных покрытий и лужение, нанесение маркировки. Для многослойных печатных плат добавляется прессование конечной платы из нескольких заготовок.

Фольгированный материал — плоский лист диэлектрика с наклеенной на него медной фольгой. Как правило, в качестве диэлектрика используют стеклотекстолит. В старой или очень дешевой аппаратуре используют текстолит на тканевой или бумажной основе, иногда именуемый гетинаксом. В СВЧ устройствах используют фторсодержащие полимеры (фторопласты). Толщина диэлектрика определяется требуемой механической и электрической прочностью, наибольшее распространение получила толщина 1,5 мм. На диэлектрик с одной или двух сторон наклеивают сплошной лист медной фольги. Толщина фольги определяется токами, под которые проектируется плата. Наибольшее распространение получила фольга толщиной 18 и 35 мкм, гораздо реже встречаются 70, 105 и 140 мкм. Такие значения исходят из стандартных толщин меди в импортных материалах, в которых толщина слоя медной фольги исчисляется в унциях (oz) на квадратный фут. 18 мкм соответствует ½ oz и 35 мкм — 1 oz.

Алюминиевые печатные платы Отдельную группу материалов составляют алюминиевые металлические печатные платы.] Их можно разделить на две группы.

  • Первая группа — решения в виде листа алюминия с качественно оксидированной поверхностью, на которую наклеена медная фольга. Такие платы нельзя сверлить, поэтому обычно их делают только односторонними. Обработка таких фольгированных материалов выполняется по традиционным технологиям химического нанесения рисунка. Иногда вместо алюминия применяют медь или сталь, ламинированные тонким изолятором и фольгой. Медь имеет большую теплопроводность, нержавеющая сталь платы обеспечивает коррозионную стойкость.
  • Вторая группа подразумевает создание токопроводящего рисунка непосредственно в алюминии основы. Для этой цели алюминиевый лист оксидируют не только по поверхности, но и на всю глубину основы, согласно рисунку токопроводящих областей, заданному фотошаблоном.

Получение рисунка проводников При изготовлении плат используются химические, электролитические или механические методы воспроизведения требуемого токопроводящего рисунка, а также их комбинации.

Химический способ изготовления печатных плат из готового фольгированного материала состоит из двух основных этапов: нанесение защитного слоя на фольгу и травление незащищенных участков химическими методами. В промышленности защитный слой наносится фотолитографическим способом с использованием ультрафиолетово-чувствительного фоторезиста, фотошаблона и источника ультрафиолетового света. Фоторезистом сплошь покрывают медь фольги, после чего рисунок дорожек с фотошаблона переносят на фоторезист засветкой. Засвеченный фоторезист смывается, обнажая медную фольгу для травления, незасвеченный фоторезист фиксируется на фольге, защищая её от травления.

Фоторезист бывает жидким или пленочным. Жидкий фоторезист наносят в промышленных условиях, так как он чувствителен к несоблюдению технологии нанесения. Пленочный фоторезист популярен при ручном изготовлении плат, однако он дороже. Фотошаблон представляет собой УФ-прозрачный материал с распечатанным на нём рисунком дорожек. После экспозиции фоторезист проявляется и закрепляется как и в обычном фотохимическом процессе. В любительских условиях защитный слой в виде лака или краски может быть нанесен шелкотрафаретным способом или вручную. Радиолюбители для формирования на фольге травильной маски применяют перенос тонера с изображения, отпечатанного на лазерном принтере («лазерно-утюжная технология»). Под травлением фольги понимают химический процесс перевода меди в растворимые соединения. Незащищенная фольга травится, чаще всего, в растворе хлорного железа или в растворе других химикатов, например медного купороса, персульфата аммония, аммиачного медно-хлоридного, аммиачного медно-сульфатного, на основе хлоритов, на основе хромового ангидрида. При использовании хлорного железа процесс травления платы идет следующим образом: FeCl3+Cu → FeCl2+CuCl. Типовая концентрация раствора 400 г/л, температура до 35°С. При использовании персульфата аммония процесс травления платы идет следующим образом: (NH4)2S2O8+Cu → (NH4)2SO4+CuSO4].После травления защитный рисунок с фольги смывается.

Механический способ изготовления предполагает использование фрезерно-гравировальных станков или других инструментов для механического удаления слоя фольги с заданных участков.

До недавнего времени лазерная гравировка печатных плат была слабо распространена в связи с хорошими отражающими свойствами меди на длине волны наиболее распространенных мощных газовых СО лазеров. В связи с прогрессом в области лазеростроения сейчас начали появляться промышленные установки прототипирования на базе лазеров.

Металлизация отверстий Переходные и монтажные отверстия могут сверлиться, пробиваться механически (в мягких материалах типа гетинакса) или лазером (очень тонкие переходные отверстия). Металлизация отверстий обычно выполняется химическим или механическим способом.
Механическая металлизация отверстий выполняется специальными заклепками, пропаянными проволочками или заливкой отверстия токопроводящим клеем. Механический способ дорог в производстве и потому применяется крайне редко, обычно в высоконадежных штучных решениях, специальной сильноточной технике или радиолюбительских условиях.
При химической металлизации в фольгированной заготовке сначала сверлятся отверстия, затем они металлизируются и только потом производится травление фольги для получения рисунка печати. Химическая металлизация отверстий — многостадийный сложный процесс, чувствительный к качеству реактивов и соблюдению технологии. Поэтому в радиолюбительских условиях практически не применяется. Упрощенно состоит из таких этапов:

  • Нанесение на диэлектрик стенок отверстия проводящей подложки. Эта подложка очень тонкая, непрочная. Наносится химическим осаждением металла из нестабильных соединений, таких как хлорид палладия.
  • На полученную основу производится электролитическое или химическое осаждение меди.

В конце производственного цикла для защиты довольно рыхлой осажденной меди применяется либо горячее лужение, либо отверстие защищается лаком (паяльной маской). Нелуженые переходные отверстия низкого качества являются одной из самых частых причин отказа электронной техники.

Многослойные платы (с числом слоев металлизации более 2) собираются из стопки тонких двух- или однослойных печатных плат, изготовленных традиционным способом (кроме наружных слоев пакета — их пока оставляют с нетронутой фольгой). Их собирают «бутербродом» со специальными прокладками (препреги). Далее выполняется прессование в печи, сверление и металлизация переходных отверстий. В последнюю очередь делают травление фольги внешних слоев.
Переходные отверстия в таких платах могут также делаться до прессования. Если отверстия делаются до прессования, то можно получать платы с так называемыми глухими отверстиями (когда отверстие есть только в одном слое бутерброда), что позволяет уплотнить компоновку.

Возможны такие покрытия как:

  • Защитно-декоративные лаковые покрытия («паяльная маска»). Обычно имеет характерный зелёный цвет. При выборе паяльной маски следует учитывать, что некоторые из них непрозрачны и под ними не видно проводников.
  • Декоративно-информационные покрытия (маркировка). Обычно наносится с помощью шелкографии, реже — струйным методом или лазером.
  • Лужение проводников. Защищает поверхность меди, увеличивает толщину проводника, облегчает монтаж компонентов. Обычно выполняется погружением в ванну с припоем или волной припоя. Основной недостаток — значительная толщина покрытия, затрудняющая монтаж компонентов высокой плотности. Для уменьшения толщины излишек припоя при лужении сдувают потоком воздуха.
  • Химические, иммерсионные или гальванические покрытия фольги проводников инертными металлами (золотом, серебром, палладием, оловом и т.п.). Некоторые виды таких покрытий наносятся до этапа травления меди.
  • Покрытие токопроводящими лаками для улучшения контактных свойств разъемов и мембранных клавиатур или создания дополнительного слоя проводников.

После монтажа печатных плат возможно нанесение дополнительных защитных покрытий, защищающих как саму плату, так и пайку и компоненты.
Механическая обработка На одном листе заготовки зачастую помещается множество отдельных плат. Весь процесс обработки фольгированной заготовки они проходят как одна плата, и только в конце их готовят к разделению. Если платы прямоугольные, то фрезеруют несквозные канавки, облегчающие последующее разламывание плат (скрайбирование, от англ. scribe царапать). Если платы сложной формы, то делают сквозную фрезеровку, оставляя узкие мостики, чтобы платы не рассыпались. Для плат без металлизации вместо фрезеровки иногда сверлят ряд отверстий с маленьким шагом. Сверление крепежных (неметаллизированных) отверстий также происходит на этом этапе.

Сейчас большинство электронных схем выполняются с помощью печатных плат. По технологиям изготовления печатных плат выполняются и сборные узлы микроэлектроники - гибридные модули, которые содержат компоненты различного функционального назначения и степени интеграции. Многослойные печатные платы и электронные компоненты высокой степени интеграции позволяют снизить весогабаритные характеристики узлов электроники и вычислительной техники. Сейчас печатной плате уже больше ста лет.

Печатная плата

Это (на англ. PCB - printed circuit board) - пластинка из электроизоляционного материала (гетинакса, текстолита, стеклотекстолита и других подобных диэлектриков), на поверхности которой каким-либо образом нанесены тонкие электропроводящие полоски (печатные проводники) с контактными площадками для подсоединения навесных радиоэлементов, в том числе модулей и интегральных схем. Эта формулировка дословно взята из политехнического словаря.

Существует более универсальная формулировка:

Под печатной платой понимается конструкция фиксированных электрических межсоединений на изоляционном основании.

Главные конструктивные элементы печатной платы - диэлектрическое основание (жесткое или гибкое) на поверхности которое находятся проводники. Диэлектрическое основание и проводники есть элементы необходимы и достаточны для того, чтобы печатная плата была печатной платой. Для установки компонентов и их подключения к проводникам используются дополнительные элементы: контактные площадки, переходные металлизируемые и монтажные отверстия, ламели разъемов, участки для осуществления теплоотвода, экранирующие и токоподводящие поверхности и т. п.

Переход к печатным платам ознаменовал качественный скачок в области конструирования радиоэлектронной аппаратуры. Печатная плата совмещает функции носителя радиоэлементов и электрического соединения таких элементов. Последняя функция невыполнима, если между проводниками и иными проводящими элементами печатной платы не будет обеспечен достаточный уровень сопротивления изоляции. Следовательно, подложка печатной платы должна выполнять функцию изолятора.

Историческая справка

Излагаемая история печатных плат выглядит так:

В начале XX века немецким инженером Альбертом Паркером Хансоном, занимавшимся разработками в области телефонии, было создано устройство, считающееся прототипом всех известных сегодня видов печатных плат. «Днем рождения» печатных плат считается 1902 год, когда изобретатель подал заявку в патентное ведомство родной страны.

Печатная плата Хансена представляла собой штамповку или вырезание изображения на бронзовой (или медной) фольге. Получившийся проводящий слой наклеивался на диэлектрик – бумагу, пропитанную парафином. Уже тогда заботясь о большей плотности размещения проводников, Хансен наклеивал фольгу с двух сторон, создавая двустороннюю печатную плату. Изобретатель также использовал идущие насквозь печатной платы соединительные отверстия. В работах Хансена есть описания создания проводников при помощи гальваники или проводящих чернил, представляющих собой измельченный в порошок металл в смеси с клеящим носителем.

Изначально для изготовления печатных плат применялись исключительно аддитивные технологии, то есть рисунок наносился на диэлектрик наклеиваемым или напыляемым материалом.

И Томаса Эдисона тоже посещали подобные идеи. Сохранилось его письмо Франку Спрагу (основавшему корпорацию Sprague Electric), где Эдисон описывает три способа рисования проводника на бумаге.

1. Рисунок формируется при помощи адгезивных полимеров путём нанесения на их не застывшую поверхность измельченного в пыль графита или бронзы.

2. Рисунок формируется непосредственно на диэлектрике. Для нанесения изображения используется ляпис (нитрат серебра), после чего серебро просто восстанавливается из соли.

3. Проводником является золотая фольга с нанесенным на нее рисунком.
Естественно, Эдисон не употреблял термина «печатные платы», но практически все названные выше идеи нашли применение в сегодняшних технологических процессах. На основе первой из них сформировались тонкопленочные технологии сегодняшнего дня, а второй метод широко применяется для нанесения покрытий путем восстановления металлов из соли.

В 1913 году Артур Берри получил патент на субтрактивный метод изготовления печатных плат. Разработчик предлагал покрывать металлическую основу слоем резистного материала и травлением убирать незащищенные части c поверхности. В 1922 году проживающий в США Эллис Бассит изобрел и запатентовал методику использования светочувствительных материалов при производстве печатных плат.

В 1918 году швейцарцем Максом Скупом была предложена технология газопламенного напыления металла. Методика осталась не востребованной из-за затратности производства и неравномерного осаждения металла.

Американец Чарльз Дуклас запатентовал технологию металлизации проводников, суть которой, заключалась в том, что в мягком диэлектрике (например, воске) прочерчивались каналы, заполняемые впоследствии металлизируемыми токопроводящими пастами при помощи электрохимического воздействия.
Так же в патент была включена технология травления, подразумевающая электролитическое осаждение металла (серебра, золота или меди) через контактную маску на пластину из низкотемпературного сплава. Пластина с осажденным рисунком нагревается, и все неприкрытые серебром части сплава удаляются. Чарльз Дукас располагал проводники с обеих сторон диэлектрической основы.

Дуклас занимался разработке многослойных печатных плат и предложил несколько интересных решений для межслойных соединений.

Француз Цезарь Паролини реанимировал аддитивный метод создания токопроводящего слоя. В 1926 году он наносил на диэлектрик изображение посредством клеящего материала с напылением на него медного порошка и полимеризовал под воздействием высокой температуры. Именно Паролини начал применять в печатных платах проволочные перемычки, устанавливаемые до полимеризации материала.
В 1933 году были изданы работы Эрвина Франца, на которых базируются все существующие сегодня методики производства гибких печатных плат. Американскому разработчику удалось нанести токопроводящий рисунок на целлофановую пленку, для чего использовался жидкий полимер с графитовым наполнением.

Инженер Пауль Эйслер в Великобритании начал внедрять печатные платы в радиоэлектронике. Во время второй мировой войны он успешно работал над поиском технологических решений для запуска печатных плат в массовое производство, широко используя полиграфические методы. После войны, в 1948 год, у Эйслер основал предприятие по изготовлению печатных плат - Technograph Printed Circuits.

В 1920-1930-х годах было выдано множество патентов на конструкции печатных плат и способы их изготовления. Первые методы изготовления печатных плат оставались преимущественно аддитивными (развитие идей Томаса Эдисона). Но в современном виде печатная плата появилась благодаря использованию технологий, заимствованных из полиграфической промышленности. Печатная плата - прямой перевод с английского полиграфического термина printing plate («печатная форма», или «матрица»). Поэтому подлинным «отцом печатных плат» считается австрийский инженер Пауль Эйслер. Он первым пришел к выводу, что полиграфические (субтрактивные) технологии можно использовать для массового производства печатных плат. В субтрактивных технологиях изображение формируется путем удаления ненужных фрагментов. Пауль Эйслер отработал технологию гальванического осаждения медной фольги и ее травления хлорным железом. Технологии массового производства печатных плат оказались востребованными уже во время Второй мировой войны. А с середины 1950-х началось становление печатных плат как конструктивной основы радиоаппаратуры не только военного, но и бытового назначения.

Материалы для печатных плат

Базовые диэлектрики для печатных плат
Основные виды и параметры материалов, применяемых для изготовления МПП, приведены в таблице 1. Типовые конструкции печатных плат основаны на применении стандартного стеклотекстолита типа FR4, с рабочей температурой, как правило, от –50 до +110 °C, температурой стеклования (разрушения) Tg около 135 °C. Диэлектрическая постоянная Dk у него может быть от 3,8 до 4,5, в зависимости от поставщика и вида материала. При повышенных требованиях к термостойкости или при монтаже плат в печи по бессвинцовой технологии (t до 260 °C) применяется высокотемпературный FR4 High Tg или FR5. При требованиях к постоянной работе на высоких температурах или при резких перепадах температур применяется полиимид. Кроме того, полиимид используют для изготовления плат повышенной надежности, для военных применений, а также в случаях, когда требуется повышенная электрическая прочность. Для плат с СВЧ-цепями (более 2 ГГц) применяются отдельные слои СВЧ-материала, или плата целиком делается из СВЧ-материала (рис. 3). Наиболее известные поставщики специальных материалов - фирмы Rogers, Arlon, Taconic, Dupont. Стоимость этих материалов выше, чем FR4, и условно показана в последнем столбце таблицы 1 относительно стоимости FR4. Примеры плат с разными видами диэлектрика показаны на рис. 4, 5.

Знание параметров материалов для печатных плат, как однослойных так и многослойных важно всем кто занимается их применение, особенно для печатных плат устройств с повышенным быстродействием и СВЧ. При проектировании МПП разработчики сталкиваются с такими задачами, как:
- расчет волнового сопротивления проводников на плате;
- расчет величины межслойной высоковольтной изоляции;
- выбор структуры глухих и скрытых отверстий.
Доступные варианты и толщины различных материалов приведены в таблицах 2–6. Следует учитывать, что допуск на толщину материала обычно составляет до ±10%, поэтому и допуск на толщину готовой многослойной платы не может быть менее ±10%.

Виды и параметры материалов для печатных плат
Вид Состав Tg
°C
Dk Стоимость Наименование
FR4 Стеклотекстолит (слоистый эпоксидный материал из стекловолокна) >140 4.7 1 (базовая) S1141
FR4
halogen free
Стеклотекстолит, не содержит галогена, сурьмы, фосфора и др., не выделяет опасных веществ при горении >140 4.7 1.1 S1155
FR4
High Tg,
FR5
Материал со сшитой сеткой, повышенная термостойкость (RoHS-совместимый) >160 4,6 1,2…1,4 S1170,
S1141 170
RCC Эпоксидный материал без стеклянной тканой основы >130 4,0 1,3…1,5 S6015
PD Полиимидная смола с арамидной основой >260 4,4 5…6,5 Arlon 85N
СВЧ
(PTFE)
СВЧ-материалы (политетрафлуор-этилен со стеклом или керамикой) 240–280 2,2–10,2 32…70 Ro3003, Ro3006,
Ro3010
СВЧ
(Non-PTFE)
СВЧ-материалы, не основанные на PTFE 240–280 3,5 10 Ro4003, Ro4350,
TMM
Pl
(полиамид)
Материал для производства гибких и гибко-жестких плат 195-220 3,4 Dupont Pyralux,
Taiflex

Tg - температура стеклования (разрушения структуры)

Dk - диэлектрическая постоянная

Базовые диэлектрики для печатных плат СВЧ

Типовые конструкции печатных плат основаны на применении стандартного стеклотекстолита типаFR4 , с рабочей температурой от –50 до +110 °C, и температурой стеклования Tg (размягчения) около 135 °C.
При повышенных требованиях к термостойкости или при монтаже плат в печи побессвинцовой технологии(t до 260 °C) применяется высокотемпературныйFR4 High Tg илиFR5 .
При требованиях к постоянной работе на высоких температурах или при резких перепадах температур применяетсяполиимид . Кроме того, полиимид используют для изготовления плат повышенной надежности, для военных применений, а также в случаях, когда требуется повышенная электрическая прочность.
Для плат сСВЧ-цепями (более 2 ГГц) применяются отдельные слоиСВЧ-материала , или плата целиком делается из СВЧ-материала. Наиболее известные поставщики специальных материалов - фирмыRogers,Arlon,Taconic,Dupont. Стоимость этих материалов выше, чем FR4, и условно показана в предпоследнем столбце таблицы относительно стоимости FR4.

Таблица 4. Материалы СВЧ фирмы Rogers для печатных плат
Материал Dk* Толщина диэлектрика, мм Толщина фольги, мкм
Ro4003 3,38 0,2 18 или 35
0,51 18 или 35
0,81 18 или 35
Ro4350 3,48 0,17 18 или 35
0,25 18 или 35
0,51 18 или 35
0,762 18
1,52 35
Препрег Ro4403 3,17 0,1 --
Препрег Ro4450 3,54 0,1 --

* Dk - диэлектрическая проницаемость

Таблица 5. Материалы СВЧ фирмы Arlon для МПП
Материал Диэлектрическая
проницаемость (Dk)
Толщина
диэлектрика, мм
Толщина
фольги, мкм
AR-1000 10 0,61±0,05 18
AD600L 6 0,787±0,08 35
AD255IM 2,55 0,762±0,05 35
AD350A 3,5 0,508±0,05 35
0,762±0,05 35
DICLAD527 2,5 0,508±0,038 35
0,762±0,05 35
1,52±0,08 35
25N 3,38 0,508 18 или 35
0,762
25N 1080pp
pre-preg
3,38 0,099 --
25N 2112pp
pre-preg
3,38 0,147 --
25FR 3,58 0,508 18 или 35
0,762
25FR 1080pp
pre-preg
3,58 0,099 --
25FR 2112pp
pre-preg
3,58 0,147 --

Dk - диэлектрическая проницаемость

Покрытия площадок печатной платы
Рассмотрим, какие бывают покрытия медных площадок под пайку элементов.

Наиболее часто площадки покрываются сплавом олово-свинец, или ПОС. Способ нанесения и выравнивания поверхности припоя называют HAL или HASL (от английского Hot Air Solder Leveling - выравнивание припоя горячим воздухом). Это покрытие обеспечивает наилучшую паяемость площадок. Однако на смену ему приходят более современные покрытия, как правило, совместимые с требованиями международной директивы RoHS.

Эта директива требует запретить присутствие вредных веществ, в том числе свинца, в продукции. Пока что действие RoHS не распространяется на территорию нашей страны, однако помнить о ее существовании небесполезно.

Возможными вариантами покрытия площадок МПП в таблице 7.

HASL применяется повсеместно, если нет иных требований.

Иммерсионное (химическое) золочение используется для обеспечения более ровной поверхности платы (особенно это важно для площадок BGA), однако имеет несколько более низкую паяемость. Пайка в печи выполняется примерно по той же технологии, что и HASL, но ручная пайка требует применения специальных флюсов. Органическое покрытие, или OSP, защищает поверхность меди от окисления. Его недостаток - малый срок сохранения паяемости (менее 6 месяцев).

Иммерсионное олово обеспечивает ровную поверхность и хорошую паяемость, хотя тоже имеет ограниченный срок пригодности для пайки. Бессвинцовый HAL имеет те же свойства, что и свинец-содержащий, но состав припоя - примерно 99,8% олова и 0,2% добавок.

Контакты ножевых разъемов , подвергающихся трению при эксплуатации платы, гальваническим способом покрывают более толстым и более жестким слоем золота. Для обоих видов золочения применяется никелевый подслой для предотвращения диффузии золота.

Таблица 7. Покрытия площадок печатной платы
Тип Описание Толщина
HASL, HAL
(hot air solder leveling)
ПОС-61 или ПОС-63,
оплавленный и выровненный горячим воздухом
15–25 мкм
Immersion gold, ENIG Иммерсионное золочение по подслою никеля Au 0,05–0,1 мкм/Ni 5 мкм
OSP, Entek Органическое покрытие,
защищает поверхность меди от окисления до пайки
При пайке
полностью растворяется
Immersion tin Иммерсионное олово, более плоская поверхность, чем HASL 10–15 мкм
Lead-free HAL Бессвинцовое лужение 15–25 мкм
Hard gold, gold fingers Гальваническое золочение контактов разъема по подслою никеля Au 0,2–0,5 мкм/Ni 5 мкм

Примечание: все покрытия, кроме HASL, совместимы с директивой RoHS и подходят для пайки припоями не содержащими свинца.

Защитные и другие виды покрытий печатной платы

Защитные покрытия применяются для изоляции поверхностей токопроводов не предназначенных для пайки.

Для полноты картины рассмотрим функциональное назначение и материалы покрытий печатной платы.

  1. Паяльная маска - наносится на поверхность платы для защиты проводников от случайного замыкания и грязи, а также для защиты стеклотекстолита от термоударов при пайке. Маска не несет другой функциональной нагрузки и не может служить защитой от влаги, плесени, пробоя и т. д. (за исключением случаев применения специальных видов масок).
  2. Маркировка - наносится на плату краской поверх маски для упрощения идентификации самой платы и расположенных на ней компонентов.
  3. Отслаиваемая маска - наносится на заданные участки платы, которые надо временно защитить, например, от пайки. В дальнейшем ее легко удалить, так как она представляет собой резиноподобный компаунд и просто отслаивается.
  4. Карбоновое контактное покрытие - наносится в определенные места платы как контактные поля для клавиатур. Покрытие имеет хорошую проводимость, не окисляется и износостойко.
  5. Графитовые резистивные элементы - могут наноситься на поверхность платы для выполнения функции резисторов. К сожалению, точность выполнения номиналов невысока - не точнее ±20% (с лазерной подгонкой- до 5%).
  6. Серебряные контактные перемычки - могут наноситься как дополнительные проводники, создавая еще один проводящий слой при недостатке места для трассировки. Применяются в основном для однослойных и двусторонних печатных плат.
Таблица 8. Покрытия поверхности печатной платы
Тип Назначение и особенности
Паяльная маска Для защиты при пайке
Цвет: зеленый, синий, красный, желтый, черный, белый
Маркировка Для идентификации
Цвет: белый, желтый, черный
Отслаиваемая маска Для временной защиты поверхности
При необходимости легко удаляется
Карбон Для создания клавиатур
Имеет высокую износостойкость
Графит Для создания резисторов
Желательна лазерная подгонка
Серебряное покрытие Для создания перемычек
Используется для ОПП и ДПП

Конструкция печатных плат

Самый далекий предшественник печатных плат - обычный провод, чаще всего изолированный. У него был существенный недостаток. В условиях высоких вибраций он требовал применения дополнительных механических элементов для его фиксации внутри РЭА. Для этого применялись носители, на которые устанавливались радиоэлементы, сами радиоэлементы и конструктивные элементы для промежуточных соединений, фиксации проводов. Это объемный монтаж.

Печатные платы свободны от этих недостатков. Их проводники закреплены на поверхности, их положение фиксировано, что позволяет просчитывать их взаимные связи. В принципе печатные платы, сейчас приближаются, к плоским конструкциям.

На начальном этапе применения, печатные платы имели одностороннее или двухстороннее расположение проводящих дорожек.

Односторонняя печатная плата - это пластина, на одной стороне которой размещены проводники, выполненные печатным способом. В двухсторонних печатных платах проводники заняли и пустующую изнаночную сторону пластины. А для их соединения были предложены разнообразные варианты, среди которых наибольшее распространение получили переходные металлизированные отверстия. Фрагменты конструкции самых простых односторонних и двухсторонних печатных плат приведены на рис. 1.

Двухсторонняя печатная плата - их использование вместо односторонних было первым шагом на пути перехода от плоскости к объему. Если абстрагироваться (мысленно отбросить подложку двухсторонней печатной платы), то получится объемная конструкция проводников. Кстати, этот шаг был сделан довольно быстро. В заявке Альберта Хансона уже указывалось на возможность размещения проводников по обеим сторонам подложки и соединения их с помощью сквозных отверстий.

Рис. 1. Фрагменты конструкции печатных плат а) односторонней и 6) двухсторонней: 1 - монтажное отверстие,2 - контактная площадка, 3 - проводник,4 - диэлектрическая подложка,5 - переходное металлизированное отверстие

Дальнейшее развитие электроники - микроэлектроники привело к применению многовыводных компонентов (чипы могут иметь более 200 выводов), росло количество электронных компонентов. В свою очередь применение цифровых микросхем и рост их быстродействия привели к росту требований по их экранированию и распределению питания к компонентам, для чего в мнослойные платы цифровых устройств (например - компьютеров) были включены специальные экранирующие токопроводящие слои. Все это привело к росту межсоединений и их усложнению, которое выразилось в росте количества слоев. В современных печатных платах оно может быть много больше десяти. В некотором смысле многослойная печатная плата приобрела объем.

Конструкция многослойных печатных плат

Рассмотрим типовую конструкцию многослойной платы.

В первом, наиболее распространенном, варианте внутренние слои платы формируются из двустороннего ламинированного медью стеклотекстолита, который называют «ядро». Наружные слои выполняются из медной фольги, спрессованной с внутренними слоями при помощи связующего - смолистого материала, называемого «препрег». После прессования при высокой температуре образуется «пирог» многослойной печатной платы, в котором далее сверлятся и металлизируются отверстия. Менее распространен второй вариант, когда внешние слои формируются из «ядер», скрепляемых препрегом. Это упрощенное описание, на основе данных вариантов существует множество других конструкций. Однако основной принцип состоит в том, что в качестве связующего материала между слоями выступает препрег. Очевидно, что не может быть ситуации, когда соседствуют два двусторонних «ядра» без прокладки из препрега, но структура фольга–препрег–фольга– препрег… и т. д. возможна, и часто используется в платах со сложными сочетаниями глухих и скрытых отверстий.

Препреги (англ. pre-preg , сокр. от pre-impregnated - предварительно пропитанный) - этокомпозиционныематериалы-полуфабрикаты. Готовый для переработки продукт предварительной пропитки частично отвержденным связующим упрочняющих материалов тканой или нетканой структуры. Их получают путем пропитки армирующей волокнистой основы равномерно распределенными полимерными связующими. Пропитка осуществляется таким образом, чтобы максимально реализовать физико-химические свойства армирующего материала. Препреговая технология позволяет получить монолитные изделия сложной формы при минимальной инструментальной обработке.
Препреги производят в форме полотна, покрытого с обеих сторон полиэтиленовой пленкой и свернутого в рулон.

Многослойные печатные платы сейчас составляют две трети мирового производства печатных плат в ценовом исчислении, хотя в количественном выражении уступают одно и двухсторонним платам.

Схематически (упрощенно) фрагмент конструкции современной многослойной печатной платы приведен на рис. 2. Проводники в таких печатных платах размещаются не только на поверхности, но и в объеме подложки. При этом сохранилась слойность расположения проводников относительно друг друга (следствие использования планарных полиграфических технологий). Слойность неизбежно присутствует в названиях печатных плат и их элементов - односторонняя, двухсторонняя, многослойная и др. Слойность реально отражает конструктив и соответствующие этому конструктиву технологии изготовления печатных плат.


Рис. 2. Фрагмент конструкции многослойной печатной платы:1 - сквозное металлизированное отверстие, 2 - глухой микропереход, 3 - скрытый микропереход, 4 - слои,5 - скрытые межслойные отверстия, 6 - контактные площадки

Реально конструкция многослойных печатных плат отличается от показанных на рис. 2.

По своей структуре МПП значительно сложнее двухсторонних плат, как много сложнее и технология их производства. Да и сама их структура существенно отличается от показанной на рис. 2. Они включают дополнительные экранные слои (земля и питание), а также несколько сигнальных слоев.

Реально они выглядят так:


a) Схематически

Для обеспечения коммутации между слоями МПП применяются межслойные переходы (vias) и микропереходы (microvias) рис. 3.а.
Межслойные переходы могут выполняться в виде сквозных отверстий, соединяющих внешние слои между собой и с внутренними слоями.

Применяются также глухие и скрытые переходы.
Глухой переход - это соединительный металлизированный канал, видимый только с верхней или нижней стороны платы.

Скрытые же переходы используются для соединения между собой внутренних слоев платы. Их применение позволяет значительно упростить разводку плат, например, 12-слойную конструкцию МПП можно свести к эквивалентной 8-слойной. коммутации.
Специально для поверхностного монтажа разработаны микропереходы, соединяющие между собой контактные площадки и сигнальные слои.


в) для наглядности в 3D виде

Для изготовления многослойных печатных плат производится соединение нескольких ламинированных фольгой диэлектриков между собой, для чего используются склеивающие прокладки - препреги.

На рисунке 3.в препрег показан белым цветом. Препрег склеивает слои многослойной печатной платы при термическом прессовании.

Общая толщина многослойных печатных плат растет непропорционально быстро с ростом числа сигнальных слоев.
В связи с этим необходимо учитывать большое соотношение толщины платы к диаметру сквозных отверстий, что является весьма жестким параметром для процесса сквозной металлизации отверстий.
Тем не менее, даже учитывая трудности с металлизацией сквозных отверстий малого диаметра, изготовители многослойных печатных плат предпочитают достигать высокой плотности монтажа за счет большего числа относительно дешевых слоев, нежели меньшим числом высокоплотных но, соответственно, более дорогих слоев.

с)
Рисунок 3

На рисунке 3.с показана примерная структура расположения слоев многослойной печатной платы с указанием их толщин.

Владимир Уразаев [ Л.12] считает, что развитие конструкций и технологий в микроэлектронике идет в соответствии с объективно существующим законом развития технических систем: задачи, связанные с размещением или перемещением объектов, решаются переходом от точки к линии, от линии к плоскости, от плоскости к трехмерному пространству.

Думаю, что и печатным платам придется подчиниться этому закону. Потенциальная возможность реализации таких многоуровневых (бесконечно уровневых) печатных плат имеется. Об этом свидетельствуют богатый опыт использования в производстве печатных плат лазерных технологий, не менее богатый опыт применения лазерной стереолитографии для формирования трехмерных объектов из полимеров, тенденция к увеличению термостойкости базовых материалов и т. д. Очевидно, такие изделия придется и назвать как-то иначе. Поскольку термин «печатная плата» уже не будет отражать ни их внутреннего содержания, ни технологии изготовления.

Возможно так и будет.

Но мне кажется уже сейчас известны объемные конструкции в проектировании печатных плат - это многослойные печатные платы. А объемный монтаж электронных компонентов с расположением контактных площадок по всем поверхностям радиокомпонентов, снижает технологичность их монтажа, качество межсоединений и усложняет их тестирование и обслуживание.

Будущее покажет!

Гибкие печатные платы

Для большинства людей печатная плата - это просто жесткая пластинка с электропроводящими межсоединеними.

Жесткие печатные платы - самый массовый продукт, используемый в радиоэлектронике, о котором знают практически все.

Но существуют еще и гибкие печатные платы, которые все больше расширяют круг своего применения. Пример - так называемые гибкие печатные кабели (шлейфы). Подобные печатные платы выполняют ограниченный объем функций (исключается функция подложки для радиоэлементов). Они служат для объединения обычных печатных плат, заменяя жгуты. Гибкие печатные платы приобретают эластичность благодаря тому, что их полимерная «подложка» находится в высокоэластическом состоянии. Гибкие печатные платы имеют две степени свободы. Их можно свернуть даже в ленту Мебиуса.

Рисунок 4

Одну или даже две степени свободы, но очень ограниченной свободы, можно придать и обычным жестким печатным платам, в которых полимерная матрица подложки находится в жестком - стеклообразном состоянии. Это достигается путем уменьшения толщины подложки. Одним из преимуществ рельефных печатных плат, изготавливаемых из тонких диэлектриков, называют возможность придания им «округлости». Тем самым появляется возможность согласовать их форму и форму объектов (ракет, космических объектов и др.), в которые их можно поместить. Результат - существенная экономия внутреннего объема изделий.

Их существенный недостаток в том, что с ростом количества слоев снижается гибкость таких печатных плат. А применение обычных негибких комплектующих возникает необходимость фиксировать их форму. Поскольку изгибы таких печатных плат с негибкими компонентами приводят к высоким механическим нагрузкам в точках их соединения с гибкой печатной платой.

Промежуточное положение между жесткими и гибкими печатными платами занимают «древние» печатные платы, состоящие из жестких элементов, складываемых подобно гармошке. Такие «гармошки», вероятно, и навели на мысль о создании многослойных печатных плат. Современные гибко-жесткие печатные платы реализованы иным способом. Речь идет преимущественно о многослойных печатных платах. В них можно совместить жесткие и гибкие слои. Если гибкие слои вывести за пределы жестких, можно получить печатную плату, состоящую из жесткого и гибкого фрагментов. Другой вариант - соединение двух жестких фрагментов гибким.

Классификация конструкций печатных плат, основанная на слойности их проводящего рисунка, охватывает большую часть конструкций печатных плат, но не всех. Например, для изготовления тканых монтажных плат или шлейфов оказалось пригодным не печатное полиграфическое, а ткацкое оборудование. Такие «печатные платы» уже имеют три степени свободы. Так же, как и обычная ткань, они могут принимать самые причудливые очертания и формы.

Печатные платы на основании с высокой теплопроводностью

В последнее время, наблюдается рост тепловыделения электронных устройств, что связано с:

Ростом производительности вычислительных систем,

Потребности коммутации больших мощностей,

Расширяющегося применения электронных компонентов с повышенным тепловыделением.

Последнее наиболее наглядно проявляется в светодиодной светотехнике, где резко вырос интерес к созданию источников света на основе мощных ультраярких светодиодов. Световая эффективность полупроводниковых светодиодов достигла уже 100лм/Вт. Такие ультраяркие светодиоды приходят на смену обычным лампам накаливания и находят свое применение практически во всех областях светотехники: лампы уличного освещения, автомобильная светотехника, дежурное освещение, рекламные вывески, светодиодные панели, индикаторы, бегущие строки, светофоры и т.д. Эти светодиоды стали незаменимы в декоративном освещении, в светодинамических системах благодаря их монохромному цвету и скорости включения. Выгодно их применять и там, где необходимо жестко экономить электроэнергию, где дорого обходится частое обслуживание и где высоки требования по электробезопасности.

Проведенные исследований показывают, что примерно 65-85% электроэнергии при работе светодиода преобразуется в тепло. Однако, при условии соблюдения рекомендованных производителем светодиодов тепловых режимов, срок службы светодиода может достигать 10 лет. Но, если нарушить тепловой режим (обычно это работа с температурой перехода более 120...125°С), срок службы светодиода может упасть в 10 раз! А при грубом несоблюдении рекомендованных тепловых режимов, например, при включении светодиодов типа emitter без радиатора в течение более 5-7 сек, светодиод может выйти из строя уже во время первого включения. Повышение температуры перехода, кроме того, приводит к снижению яркости свечения и смещению рабочей длины волны. Поэтому очень важно правильно рассчитать тепловой режим и, по возможности, максимально рассеять выделяемое светодиодом тепло.

Крупные производители мощных светодиодов, такие как Cree, Osram, Nichia, Luxeon, Seoul Semiconductor, Edison Opto и т.п., уже давно, для упрощения включения и расширения областей применения светодиодов, изготавливают их в виде светодиодных модулей или кластеров на печатных платах с металлическим основанием (в международной классификации IMPCB – Insulated Metal Printed Circuit Board, или AL PCB – печатные платы на алюминиевом основании).

Рисунок 5

Эти печатные платы на аллюминиевом основании имеют малое и фиксированное тепловое сопротивление, что позволяет при их установке на радиатор достаточно просто обеспечить теплоотведение от p-n перехода светодиода и обеспечить его работу в течении всего срока эксплуатации.

В качестве материалов с высокой теплопроводностью для оснований таких печатных плат применяют Медь, Алюминий, различные виды керамики.

Проблемы технологии промышленного производства

История развития технологии производства печатных плат, есть история улучшения качества и преодоления возникающих по ходу развития проблем.

Вот ее некоторые подробности.

Печатные платы, изготавливаемые методом металлизации сквозных отверстий, несмотря на их широчайшее применение, обладают очень серьезным недостатком. С конструктивной точки зрения самое слабое звено таких печатных плат - места соединения металлизированных столбиков в переходных отверстиях и проводящих слоев (контактных площадок). Соединение металлизированного столбика и проводящего слоя идет по торцу контактной площадки. Длина соединения определяется толщиной медной фольги и обычно составляет 35 мкм и менее. Гальванической металлизации стенок переходных отверстий предшествует стадия химической металлизации. Химическая медь в отличие от гальванической меди более рыхлая. Поэтому соединение металлизированного столбика с торцевой поверхностью контактной площадки происходит через промежуточный, более слабый по прочностным характеристикам подслой химической меди. Коэффициент термического расширения стеклотекстолита гораздо больше, чем у меди. При переходе через температуру стеклования эпоксидной смолы разница резко возрастает. При термических ударах, которые по самым разным причинам испытывает печатная плата, соединение подвергается очень большим механическим нагрузкам и... рвется. Как следствие, разрывается электрическая цепь и нарушается работоспособность электрической схемы.

Рис. 6. Межслойные переходы в многослойных печатных платах: а) без подтрава диэлектрика,6) с подтравом диэлектрика 1 - диэлектрик, 2 - контактная площадка внутреннего слоя, 3 - химическая медь,4 - гальваническая медь

Рис. 7. Фрагмент конструкции многослойной печатной платы, изготовленной методом послойного наращивания: 1 - межслойный переход, 2 - проводник внутреннего слоя, 3 - монтажная контактная площадка, 4 - проводник наружного слоя, 5 - диэлектрические слои

В многослойных печатных платах повышения надежности внутренних переходов можно достичь введением дополнительной операции - подтрава (частичного удаления) диэлектрика в переходных отверстиях перед проведением металлизации. В таком случае соединение металлизированных столбиков с контактными площадками осуществляется не только по торцу, но и частично по внешним кольцевым зонам этих площадок (рис. 6).

Более высокой надежности металлизированных переходов многослойных печатных плат удалось добиться при использовании технологии изготовления многослойных печатных плат методом послойного наращивания (рис. 7). Соединения между проводящими элементами печатных слоев в этом способе осуществляются гальваническим наращиванием меди в отверстия слоя изоляции. В отличие от метода металлизации сквозных отверстий в данном случае переходные отверстия заполняются медью целиком. Площадь соединения между проводящими слоями становится гораздо больше, да и геометрия иная. Разорвать такие соединения не так-то просто. И все-таки эта технология тоже далека от идеальной. Переход «гальваническая медь - химическая медь - гальваническая медь» все равно остается.

Печатные платы, изготовленные методом металлизации сквозных отверстий, должны выдерживать не менее четырех (многослойные не менее трех) перепаек. Рельефные печатные платы допускают гораздо большее число перепаек (до 50). По мнению разработчиков, металлизированные переходы в рельефных печатных платах не понижают, а повышают их надежность. Чем же вызван такой резкий качественный скачок? Ответ прост. В технологии изготовления рельефных печатных плат проводящие слои и соединяющие их металлизированные столбики реализуются в едином технологическом цикле (одновременно). Поэтому отсутствует переход «гальваническая медь - химическая медь - гальваническая медь». Но такой высокий результат был получен в результате отказа от самой массовой технологии изготовления печатных плат, в результате перехода к другому конструктиву. Отказаться от метода металлизации сквозных отверстий по многим причинам не желательно.

Как же быть?

Ответственность за образование барьерного слоя на стыке торцов контактных площадок и металлизированных пистонов в основном ложится на технологов. Они же эту проблему смогли и разрешить. Революционные изменения в технологию изготовления печатных плат внесли методы прямой металлизации отверстий, которая исключает стадию химической металлизации, ограничиваясь только предварительной активацией поверхности. Причем процессы прямой металлизации реализуются таким образом, что проводящая пленка возникает только там, где это нужно - на поверхности диэлектрика. Как следствие, барьерный слой в металлизированных переходах печатных плат, изготовленных методом прямой металлизации отверстий, просто отсутствует. Не правда ли, красивый способ разрешения технического противоречия?

Удалось преодолеть и техническое противоречие имеющей отношение к металлизации переходных отверстий. Металлизируемые отверстия могут стать слабым звеном печатных плат по другой причине. Толщина покрытия стенок переходных отверстий в идеале должна быть равномерной по всей их высоте. Иначе вновь возникают проблемы с надежностью. Физ химия процессов нанесения гальванических покрытий противодействует этому. Идеальный и реальный профиль покрытия в металлизируемых переходных отверстиях приведены на рис. 5. Толщина покрытия в глубине отверстия обычно меньше, чем у поверхности. Причины самые разные: неравномерная плотность тока, катодная поляризация, недостаточная скорость обмена электролита и др. В современных печатных платах диаметр переходных металлизируемых отверстий уже перешагнул отметку 100 мкм, а соотношение высоты к диаметру отверстия в отдельных случаях достигает 20:1. Ситуация предельно усложнилась. Физические методы (использование ультразвука, увеличение интенсивности обмена жидкости в отверстиях печатных плат и т. д.) уже исчерпали свои возможности. Начинает играть существенную роль даже вязкость электролита.

Рис. 8. Сечение металлизируемого переходного отверстия в печатной плате. 1 -диэлектрик, 2 - идеальный профиль металлизации стенок отверстия, 3 - реальный профиль металлизации стенок отверстия,
4 - резист

Традиционно эта задача решалась благодаря использованию электролитов с выравнивающими добавками, которые адсорбируются в тех областях, где выше плотность тока. Сорбция таких добавок пропорциональна плотности тока. Добавки создают барьерный слой, противодействуя избыточному осаждению гальванического покрытия на острых кромках и прилегающих к ним областях (ближе к поверхности печатной платы).

Иное решение данной задачи теоретически известно давно, а практически его удалось воплотить совсем недавно - после того как был освоен промышленный выпуск импульсных источников питания большой мощности. Этот способ основан на использовании импульсного (реверсного) режима питания гальванических ванн. Большую часть времени подается прямой ток. При этом происходит осаждение покрытия. Меньшую часть времени подается обратный ток. Одновременно происходит растворение осажденного покрытия. Неравномерная плотность тока (больше у острых углов) в данном случае приносит только пользу. По этой причине растворениепокрытия происходит в первую очередь и в большей степени у поверхности печатной платы. В этом техническом решении применяется целый «букет» приемов разрешения технических противоречий: использовать частично избыточное действие, обратив вред в пользу, применить переход от непрерывного процесса к импульсному, сделать наоборот и др. Да и полученный результат соответствует этому «букету». При определенном сочетании продолжительности прямых и обратных импульсов даже появляется возможность получить толщину покрытия в глубине отверстия больше, чем у поверхности печатной платы. Вот почему такая технология оказалась незаменимой для заполнения металлом глухих переходных отверстий (достояния современных печатных плат), благодаря которым плотность межсоединений в ПП увеличивается примерно вдвое.

Проблемы, связанные с надежностью металлизированных переходов в печатных платах, носят локальный характер. Следовательно, противоречия, возникающие в процессе их развития, по отношению к печатным платам в целом также не носят всеобщего характера. Хотя такие печатные платы и занимают львиную долю рынка всех печатных плат.

Так же в процессе развития решаются и другие проблемы, с которыми сталкиваются технологи, но потребители о них даже не задумываются. Мы получаем многослойные печатные платы для своих нужд и применяем их.

Микроминиатюризация

На начальном этапе на печатные платы ставились те же компоненты что применялись при объемном монтаже РЭА, правда с некоторой доработкой выводов для снижения их размеров. Но наиболее распространенные компоненты можно было устанавливать на печатные платы без переделок.

С появлением печатных плат появилась возможность уменьшения размеров компонентов применяемых на печатных платах, что в свою очередь привело к снижения рабочих напряжений и токов потребляемых этими элементами. С 1954 года Министерством электростанций и электропромышленности массово выпускался ламповый переносной радиоприемник "Дорожный", в котором использовалась печатная плата.

С появлением миниатюрных полупроводниковых усилительных приборов - транзисторов печатные платы стали доминировать в бытовой технике, чуть позже в промышленности, а с появлением объединенных на одном кристалле фрагментов электронных схем - функциональных модулей и микросхем их конструкция предусматривала уже установку исключительно не печатные платы.

С продолжением снижения размеров активных и пассивных компонентов появилось новое понятие -«Микроминиатюризация».

В электронных компонентах это выразилось в появление БИС и СБИС содержащих многие миллионы транзисторов. Их появление заставило увеличить количество внешних связей (см. контактную поверхность грвфического процессора на рисунке 9.а), что в свою очередь вызвало усложнение разводки токопроводящих линий это видно на рисунке 9.б.

Такая панель графического процессора, да и CPU тоже - не что иное как небольшая многослойная печатная плата, на которой размещены сам чип процессора, разводка соединений выводов чипа с контактным полем и навесные элементы (обычно конденсаторы фильтров системы распределения питания)

Рисунок 9

И пусть Вам не покажется шуткой, CPU 2010 года от Intel или AMD - это тоже печатная плата, причем многослойная.

Рисунок 9а

Развития печатных плат, как и вообще электронной техники это линии уменьшения ее элементов; их уплотнения на поверхности печатной, как и уменьшение элементов электронной техники. Под «элементами» в данном случае следует понимать как собственное достояние печатных плат (проводники, переходные отверстия и др.), так и элементы из надсистемы (печатного узла) - радиоэлементы. Последние по скорости осуществления микроминиатюризации идут впереди печатных плат.

Разработкой СБИС занимается микроэлектроника.

Увеличение плотности расположения элементной базы требует того же самого от проводников печатной платы - носителя данной элементной базы. В связи с этим возникает множество задач, требующих решения. О двух таких задачах и способах их решения мы и поговорим подробнее.

Первые способы изготовления печатных плат были основаны на приклеивании проводников из медной фольги к поверхности диэлектрической подложки.

Предполагалось, что ширина проводников и зазоры между проводниками измеряются миллиметрами. В этом варианте такая технология была вполне работоспособной. Последующая миниатюризация электронной техники потребовала создания иных методов изготовления печатных плат, основные варианты которых (субтрактивные, аддитивные, полуаддитивные, комбинированные) используются и поныне. Применение таких технологий позволило реализовать печатные платы с размерами элементов, измеряемых десятыми долями миллиметра.

Достижение уровня разрешения в печатных платах примерно 0,1 мм (100 мкм) стало знаковым событием. С одной стороны, произошел переход «вниз» еще на один порядок. С другой - своеобразный качественный скачок. Почему? Диэлектрической подложкой большинства современных печатных плат является стеклотекстолит - слоистый пластик с полимерной матрицей, армированной стеклотканью. Уменьшение зазоров между проводниками печатной платы привело к тому, что они стали соизмеримы с толщиной стеклянных нитей или толщиной узлов переплетения этих нитей в стеклоткани. И ситуация, при которой проводники «замыкаются» такими узелками, стала вполне реальна. Как следствие, стало реальным и образование своеобразных капилляров в стеклотекстолите, «замыкающих» данные проводники. В условиях повышенной влажности капилляры, в конечном счете, приводят к ухудшению уровня изоляции между проводниками печатных плат. А если точнее, это происходит даже в условиях обычной влажности. Конденсация влаги в капиллярных структурах стеклотекстолита отмечается и в нормальных условиях Влага всегда снижает уровень сопротивления изоляции.

Поскольку в современной радиоэлектронной аппаратуре такие печатные платы стали явлением обычным, можно сделать вывод, что эту проблему разработчикам базовых материалов для печатных плат все же удалось разрешить традиционными методами. Но справятся ли они со следующим знаковым событием? Очередной качественный скачок уже произошел.

Сообщается о том, что специалистами компании Samsung освоена технология изготовления печатных плат с шириной проводников и зазорами между ними 8-10 мкм. А ведь это уже толщина не стеклянной нити, а стекловолокна!

Задача обеспечения изоляции в сверхмалых зазорах между проводниками настоящих и особенно будущих печатных плат сложна. Какими методами она будет решаться - традиционными либо нетрадиционными - и будет ли решена - покажет время.

Рис. 10. Профили травления медной фольги: а - идеальный профиль, б - реальный профиль; 1 - защитный слой, 2 - проводник, 3 - диэлектрик

Существовали сложности получения в печатных платах сверхмалые (сверхузкие) проводники. По многим причинам в технологиях изготовления печатных плат массовое распространение получили субтрактивные методы. В субтрактивных методах рисунок электрической схемы формируется путем удаления ненужных фрагментов фольги. Еще в годы Второй мировой войны Пауль Эйслер отработал технологию травления медной фольги хлорным железом. Столь непритязательная технология используется радиолюбителями до сих пор. Промышленные технологии недалеко ушли от этой «кухонной» технологии. Разве что изменился состав травильных растворов и появились элементы автоматизации процесса.

Принципиальный недостаток абсолютно всех технологий травления заключается в том, что травление идет не только в желаемом направлении (по направлению к поверхности диэлектрика), но и в не желаемом поперечном направлении. Боковой подтрав проводников соизмерим с толщиной медной фольги (около 70%). Обычно вместо идеального профиля проводника получается грибоподобный профиль (рис. 10). Когда ширина проводников велика, а в самых простых печатных платах она измеряется даже миллиметрами, на боковой подтрав проводников попросту закрывают глаза. Если же ширина проводников соизмерима с их высотой или даже меньше ее (реалии сегодняшнего дня), то «боковые устремления» ставят под сомнение целесообразность применения таких технологий.

На практике величину бокового подтрава печатных проводников удается уменьшить в какой-то степени. Это достигается увеличением скорости травления; использованием струйного облива (струи травителя совпадают с желаемым направлением - перпендикулярно плоскости листа), а также другими способами. Но когда ширина проводника приближается к его высоте, эффективность таких усовершенствований становится явно недостаточной.

Но успехи фотолитограции, химии и технологии позволяют сейчас решить все эти проблемы. Эти решения берутся из технологий микроэлектроники.

Радиолюбительские технологии производства печатных плат

Изготовление печатных плат в радиолюбительских условиях имеет свои особенности, и развитие техники все увеличивает эти возможности. Но основой их продолжают оставаться процессы

Вопрос о том, как можно дешево изготавливать печатные платы в домашних условиях, волнует всех радиолюбителей, наверное, с 60х годов прошлого века, когда печатные платы нашли широкое применение в бытовой технике. И если тогда выбор технологий был не так уж велик, то сегодня благодаря развитию современной техники радиолюбители получают возможность быстро и качественно изготавливать печатные платы без применения какого-либо дорогостоящего оборудования. И эти возможности постоянно расширяются позволяя все более приближать качество их творений к промышленным образцам.

Собственно, весь процесс изготовления печатной платы можно условно разделить на пять основных этапов:

  • предварительная подготовка заготовки (очистка поверхности, обезжиривание);
  • нанесение тем или иным способом защитного покрытия;
  • удаление лишней меди с поверхности платы (травление);
  • очистка заготовки от защитного покрытия;
  • сверловка отверстий, покрытие платы флюсом, лужение.

Мы рассматриваем только наиболее распространенную «классическую» технологию, при которой лишние участки меди с поверхности платы удаляются путем химического травления. Помимо этого, возможно, например, удаление меди путем фрезерования или с использованием электроискровой установки. Однако эти способы не получили широкого распространения ни в радиолюбительской среде, ни в промышленности (хотя изготовление плат фрезерованием иногда применяется в тех случаях, когда необходимо очень быстро изготовить несложные печатные платы в единичных количествах).

А здесь расскажем о 4 первых пунктах технологического процесса, поскольку сверловка выполняется радиолюбителем с помощью того инструмента который у него сущетвует.

В домашних условиях изготовить многослойную печатную плату способную конкурировать с промышленными образцами невозможно, поэтому обычно в радиолюбительских условиях применяются двухсторонние печатные платы, а в конструкциях СВЧ устройств только двухсторонние.

Хотя надо стремиться при изготовлении печатных плат в домашних условиях следует стремиться при разработке схемы использовать как можно больше компонентов для поверхностного монтажа, что в некоторых случаях позволяет развести практически всю схему на одной стороне платы. Связано это с тем, что до сих пор не изобретено никакой реально осуществимой в домашних условиях технологии металлизации переходных отверстий. Поэтому в случае, если разводку платы не удается выполнить на одной стороне, следует выполнять разводку на второй стороне с использованием в качестве межслойных переходов выводов различных компонентов, установленных на плате, которые в этом случае придется пропаивать с двух сторон платы. Конечно, существуют различные способы замены металлизации отверстий (использование тонкого проводника, вставленного в отверстие и припаянного к дорожкам с обеих сторон платы; использование специальных пистонов), однако все они имеют существенные недостатки и неудобны в использовании. В идеальном случае плата должна разводиться только на одной стороне с использованием минимального количества перемычек.

Остановимся теперь подробнее на каждом из этапов изготовления печатной платы.

Предварительная подготовка заготовки

Данный этап является начальным и заключается в подготовке поверхности будущей печатной платы к нанесению на нее защитного покрытия. В целом за продолжительный промежуток времени технология очистки поверхности не претерпела сколько-нибудь значительных изменений. Весь процесс сводится к удалению окислов и загрязнений с поверхности платы с использованием различных абразивных средств и последующему обезжириванию.

Для удаления сильных загрязнений можно использовать мелкозернистую наждачную бумагу («нулевку»), мелкодисперсный абразивный порошок или любое другое средство, не оставляющее на поверхности платы глубоких царапин. Иногда можно просто вымыть поверхность печатной платы жесткой мочалкой для мытья посуды с моющим средством или порошком (для этих целей удобно использовать абразивную мочалку для мытья посуды, которая похожа на войлок с мелкими вкраплениями какого-то вещества; часто такая мочалка бывает наклеена на кусок поролона). Кроме того, при достаточно чистой поверхности печатной платы можно вообще пропустить этап абразивной обработки и сразу перейти к обезжириванию.

В случае наличия на печатной плате только толстой оксидной пленки ее можно легко удалить путем обработки печатной платы в течение 3-5 секунд раствором хлорного железа с последующим промыванием в холодной проточной воде. Следует, однако, отметить, что желательно либо производить данную операцию непосредственно перед нанесением защитного покрытия, либо после ее проведения хранить заготовку в темном месте, поскольку на свету медь быстро окисляется.

Заключительный этап подготовки поверхности заключается в обезжиривании. Для этого можно использовать кусочек мягкой ткани, не оставляющей волокон, смоченный спиртом, бензином или ацетоном. Здесь следует обратить внимание на чистоту поверхности платы после обезжиривания, поскольку в последнее время стали попадаться ацетон и спирт со значительным количеством примесей, которые оставляют на плате после высыхания беловатые разводы. Если это так, то стоит поискать другой обезжиривающий состав. После обезжиривания плату следует промыть в проточной холодной воде. Качество очистки можно контролировать, наблюдая за степенью смачивания водой поверхности меди. Полностью смоченная водой поверхность, без образования на ней капель и разрывов пленки воды, является показателем нормального уровня очистки. Нарушения в этой пленке воды указывают, что поверхность очищена недостаточно.

Нанесение защитного покрытия

Нанесение защитного покрытия является самым важным этапом в процессе изготовления печатных плат, и именно им на 90 % определяется качество изготовленной платы. В настоящее время в радиолюбительской среде наиболее популярными являются три способа нанесения защитного покрытия. Мы их рассмотрим в порядке возрастания качества получаемых при их использовании плат.

В первую очередь надо уточнить, что защитное покрытие на поверхности заготовки должно образовывать однородную массу, без дефектов, с ровными четкими границами и устойчиво к воздействию химических компонентов травильного раствора.

Ручное нанесение защитного покрытия

При этом способе чертеж печатной платы переносится на стеклотекстолит вручную при помощи какого- либо пишущего приспособления. В последнее время в продаже появилось множество маркеров, краситель которых не смывается водой и дает достаточно прочный защитный слой. Кроме того, для ручного рисования можно использовать рейсфедер или какое-либо другое приспособление, заправленное красителем. Так, например, удобно использовать для рисования шприц с тонкой иглой (лучше всего для этих целей подходят инсулиновые шприцы с диаметром иглы 0,3-0,6 мм), обрезанной до длины 5-8 мм. При этом шток в шприц вставлять не следует - краситель должен поступать свободно под действием капиллярного эффекта. Также вместо шприца можно использовать тонкую стеклянную или пластмассовую трубку, вытянутую над огнем для достижения нужного диаметра. Особое внимание следует обратить на качество обработки края трубки или иглы: при рисовании они не должны царапать плату, в противном случае можно повредить уже закрашенные участки. В качестве красителя при работе с такими приспособлениями можно использовать разбавленный растворителем битумный или какой- либо другой лак, цапонлак или даже раствор канифоли в спирте. При этом необходимо подобрать консистен цию красителя таким образом, чтобы он свободно поступал при рисовании, но в то же время не вытекал и не образовывал капель на конце иглы или трубки. Стоит отметить, что ручной процесс нанесения защитного покрытия достаточно трудоемок и годится только в тех случаях, когда необходимо очень быстро изготовить небольшую плату. Минимальная ширина дорожки, которой можно добиться при рисовании вручную, составляет порядка 0,5 мм.

Использование «технологии лазерного принтера и утюга»

Данная технология появилась сравнительно недавно, однако сразу получила широчайшее распространение в силу своей простоты и высокого качества получаемых плат. Основу технологии составляет перенос тонера (порошка, используемого при печати в лазерных принтерах) с какой-либо подложки на печатную плату.

При этом возможны два варианта: либо используемая подложка отделяется от платы перед травлением, либо, если в качестве подложки используется алюминиевая фольга, она стравливается вместе с медью .

Первый этап использования данной технологии заключается в печати зеркального изображения рисунка печатной платы на подложке. Параметры печати принтера при этом должны быть установлены на максимальное качество печати (поскольку в этом случае происходит нанесение слоя тонера наибольшей толщины). В качестве подложки можно использовать тонкую мелованную бумагу (обложки от различных журналов), бумагу для факсов, алюминиевую фольгу, пленку для лазерных принтеров, основу от самоклеящейся пленки Oracal или какие-нибудь другие материалы. При использовании слишком тонкой бумаги или фольги может потребоваться приклеить их по периметру на лист плотной бумаги. В идеальном случае принтер должен иметь тракт для прохождения бумаги без перегибов, что предотвращает смятие подобного бутерброда внутри принтера. Большое значение это имеет и при печати на фольге или основе от пленки Oracal, поскольку тонер на них держится очень слабо, и в случае перегиба бумаги внутри принтера существует большая вероятность, что придется потратить несколько неприятных минут на очистку печки принтера от налипших остатков тонера. Лучше всего, если принтер может пропускать бумагу через себя горизонтально, печатая при этом на верхней стороне (как, например, HP LJ2100 - один из лучших принтеров для применения при изготовлении печатных плат). Хочется сразу предупредить владельцев принтеров типа HP LJ 5L, 6L, 1100, чтобы они не пытались печатать на фольге или основе от Oracal - обычно подобные эксперименты заканчиваются плачевно. Также помимо принтера можно использовать и копировальный аппарат, применение которого иногда дает даже лучшие по сравнению с принтерами результаты за счет нанесения толстого слоя тонера. Основное требование, которое предъявляется к подложке, - легкость ее отделения от тонера. Кроме того, в случае использования бумаги она не должна оставлять в тонере ворсинок. При этом возможны два варианта: либо подложка после перенесения тонера на плату просто снимается (в случае пленки для лазерных принтеров или основы от Oracal), либо предварительно размачивается в воде и потом постепенно отделяется (мелованная бумага).

Перенос тонера на плату заключается в прикладывании подложки с тонером к предварительно очищенной плате с последующим нагревом до температуры, немного превышающей температуру плавления тонера. Возможно огромное количество вариантов как это сделать, однако наиболее простым является прижим подложки к плате горячим утюгом. При этом для равномерного распределения давления утюга на подложку рекомендуется проложить между ними несколько слоев плотной бумаги. Очень важным вопросом является температура утюга и время выдержки. Эти параметры варьируются в каждом конкретном случае, поэтому, возможно, придется поставить не один эксперимент, прежде чем вы получите качественные результаты. Критерий тут один: тонер должен успеть достаточно расплавиться, чтобы прилипнуть к поверхности платы, и в то же время должен не успеть дойти до полужидкого состояния, чтобы края дорожек не расплющились. После «приварки» тонера к плате необходимо отделить подложку (кроме случая использования в качестве подложки алюминиевой фольги: ее отделять не следует, поскольку она растворяется практически во всех травильных растворах). Пленка для лазерных принтеров и основа от Oracal просто аккуратно снимаются, в то время как обычная бумага требует предварительного размачивания в горячей воде.

Стоит отметить, что в силу особенностей печати лазерных принтеров слой тонера в середине больших сплошных полигонов достаточно мал, поэтому следует по мере возможности избегать использования таких областей на плате, либо после снятия подложки придется подретушировать плату вручную. В целом использование данной технологии после некоторой тренировки позволяет добиться ширины дорожек и зазоров между ними вплоть до 0,3 мм.

Я использую, уже много лет, именно эту технологию (с тех пор как мне стал доступен лазерный принтер).

Применение фоторезистов

Фоторезистом называется чувствительное к свету (обычно в области близкого ультрафиолета) вещество, которое под воздействием освещения изменяет свои свойства.

В последнее время на российском рынке появилось несколько видов импортных фоторезистов в аэрозольной упаковке, которые особенно удобны для использования в домашних условиях. Сущность применения фоторезиста заключается в следующем: на плату с нанесенным на нее слоем фоторезиста накладывается фотошаблон () и производится ее засветка, после чего засвеченные (или незасвеченные) участки фоторезиста смываются специальным растворителем, в качестве которого обычно выступает едкий натр (NaOH). Все фоторезисты делятся на две категории: позитивные и негативные. Для позитивных фоторезистов дорожке на плате соответствует черный участок на фотошаблоне, а для негативных, соответственно, прозрачный.

Наибольшее распространение получили позитивные фоторезисты как наиболее удобные в применении.

Остановимся более подробно на использовании позитивных фоторезистов в аэрозольной упаковке. Первым этапом является подготовка фотошаблона. В домашних условиях его можно получить, напечатав рисунок платы на лазерном принтере на пленке. При этом необходимо особое внимание уделить плотности черного цвета на фотошаблоне, для чего необходимо отключить в настройках принтера все режимы экономии тонера и улучшения качества печати. Кроме того, некоторые фирмы предлагают вывод фотошаблона на фотоплоттере - при этом вам гарантирован качественный результат.

На втором этапе на предварительно подготовленную и очищенную поверхность платы наносится тонкая пленка фоторезиста. Делается это путем распыления его с расстояния порядка 20 см. При этом следует стремиться к максимальной равномерности получаемого покрытия. Кроме того, очень важно обеспечить отсутствие пыли в процессе распыления - каждая попавшая в фоторезист пылинка неминуемо оставит свой след на плате.

После нанесения слоя фоторезиста необходимо высушить получившуюся пленку. Делать это рекомендуется при температуре 70-80 градусов, причем сначала нужно подсушить поверхность при небольшой температуре и лишь затем постепенно довести температуру до нужного значения. Время сушки при указанной температуре составляет порядка 20-30 мин. В крайнем случае допускается сушка платы при комнатной температуре в течение 24 часов. Платы с нанесенным фоторезистом должны храниться в темном прохладном месте.

Следующим после нанесения фоторезиста этапом является экспонирование. При этом на плату накладывается фотошаблон (стороной печати к плате, это способствует увеличению четкости при экспонировании), который прижимается тонким стеклом или. При достаточно небольших размерах плат для прижима можно использовать отмытую от эмульсии фотопластинку. Поскольку область максимума спектральной чувствительности большинства современных фоторезистов приходится на ультрафиолетовый диапазон, для засветки желательно использовать лампу с большой долей УФ-излучения в спектре (ДРШ, ДРТ и др.). В крайнем случае, можно использовать мощную ксеноновую лампу. Время экспонирования зависит от многих причин (тип и мощность лампы, расстояние от лампы до платы, толщина слоя фоторезиста и др.) и подбирается экспериментально. Однако в целом время экспонирования составляет обычно не более 10 минут даже при экспонировании под прямыми солнечными лучами.

(Пластмассовые, прозрачные в видимом свете, пластинки использовать для прижима не рекомендую, так как у них сильное поглощение УФ излучения)

Проявление большинства фоторезистов осуществляется раствором едкого натра (NaOH) - 7 граммов на литр воды. Лучше всего использовать свежеприготовленный раствор, имеющий температуру 20-25 градусов. Время проявления зависит от толщины пленки фоторезиста и находится в пределах от 30 секунд до 2 минут. После проявления плату можно подвергать травлению в обычных растворах, поскольку фоторезист устойчив к воздействию кислот. При использовании качественных фотошаблонов применение фоторезиста позволяет получить дорожки шириной вплоть до 0,15-0,2мм.

Травление

Известно много составов для химического стравливания меди. Все они отличаются скоростью протекания реакции, составом выделяющихся в результате реакции веществ, а также доступностью необходимых для приготовления раствора химических реактивов. Ниже приведена информация о наиболее популярных растворах для травления.

Хлорное железо (FeCl)

Пожалуй, самый известный и популярный реактив. Сухое хлорное железо растворяется в воде до тех пор, пока не будет получен насыщенный раствор золотисто-желтого цвета (для этого потребуется порядка двух столовых ложек на стакан воды). Процесс травления в этом растворе может занять от 10 до 60 минут. Время зависит от концентрации раствора, температуры и перемешивания. Перемешивание значительно ускоряет протекание реакции. В этих целях удобно использовать компрессор для аквариумов, который обеспечивает перемешивание раствора пузырьками воздуха. Также реакция ускоряется при подогревании раствора. По окончании травления плату необходимо промыть большим количеством воды, желательно с мылом (для нейтрализации остатков кислоты). К недостаткам данного раствора следует отнести образование в процессе реакции отходов, которые оседают на плате и препятствуют нормальному протеканию процесса травления, а также сравнительно низкую скорость реакции.

Персульфат аммония

Светлое кристаллическое вещество, растворяется в воде исходя из соотношения 35 г вещества на 65 г воды. Процесс травления в этом растворе занимает порядка 10 минут и зависит от площади медного покрытия, подвергающегося травлению. Для обеспечения оптимальных условий протекания реакции раствор должен иметь температуру порядка 40 градусов и постоянно перемешиваться. По окончании травления плату необходимо промыть в проточной воде. К недостаткам этого раствора относится необходимость поддержания требуемого температурного режима и перемешивания.

Раствор соляной кислоты (HCl) и перекиси водорода (H 2 O 2)

- Для приготовления этого раствора необходимо к 770 мл воды добавить 200 мл 35 % соляной кислоты и 30 мл 30 % перекиси водорода. Готовый раствор должен храниться в темной бутылке, не закрытой герметически, так как при разложении перекиси водорода выделяется газ. Внимание: при использовании данного раствора необходимо соблюдать все меры предосторожности при работе с едкими химическими веществами. Все работы необходимо производить только на свежем воздухе или под вытяжкой. При попадании раствора на кожу ее необходимо немедленно промыть большим количеством воды. Время травления сильно зависит от перемешивания и температуры раствора и составляет порядка 5-10 минут для хорошо перемешиваемого свежего раствора при комнатной температуре. Не следует нагревать раствор выше 50 градусов. После травления плату необходимо промыть проточной водой.

Данный раствор после травления можно восстанавливать добавлением H 2 O 2 . Оценка требуемого количества перекиси водорода осуществляется визуально: погруженная в раствор медная плата должна перекрашиваться из красного в темнокоричневый цвет. Образование пузырей в растворе свидетельствует об избытке перекиси водорода, что ведет к замедлению реакции травления. Недостатком данного раствора является необходимость строгого соблюдения при работе с ним всех мер предосторожности.

Раствор лимонной кислоты и перекиси водорода от Радиокота

В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли.

Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте - раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления.

Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.

Очистка заготовки

После завершения травления и промывки платы необходимо очистить ее поверхность от защитного покрытия. Сделать это можно каким-либо органическим растворителем, например, ацетоном.

Далее необходимо просверлить все отверстия. Делать это нужно остро заточенным сверлом при максимальных оборотах электродвигателя. В случае, если при нанесении защитного покрытия в центрах контактных площадок не было оставлено пустого места, необходимо предварительно наметить отверстия (сделать это можно, например, керном). После чего дефекты (бахрома) с обратной стороны платы удаляется зенкованием, а на двухсторонней печатной плате на меди - сверлом диаметром около 5 мм в ручном зажиме за один оборот сверла без приложения усилия.

Следующим этапом является покрытие платы флюсом с последующим лужением. Можно использовать специальные флюсы промышленного изготовления (лучше всего смываемые водой или вообще не требующие смывания) либо просто покрыть плату слабым раствором канифоли в спирте.

Лужение можно производить двумя способами:

Погружением в расплав припоя

Помощи паяльника и металлической оплетки, пропитанной припоем.

В первом случае необходимо изготовить железную ванночку и заполнить ее небольшим количеством легкоплавкого припоя - сплава Розе или Вуда. Расплав должен быть полностью покрыт сверху слоем глицерина во избежание окисления припоя. Для нагревания ванночки можно использовать перевернутый утюг или электроплитку. Плата погружается в расплав, а затем вынимается с одновременным удалением излишков припоя ракелем из твердой резины.

Заключение

Думаю, данный материал поможет читателям получить представление о конструкции и изготовлению печатных плат. А тем кто начинает заниматься электроникой получить основные навыки их изготовления в домашних условиях.Для более полного ознакомления с печатными платами рекомендую почитать [ Л.2] . Ее можно скачать в Интернет.

Литература
  1. Политехнический словарь. Редкол.: Инглинский А. Ю. и др. М.: Советская энциклопедия. 1989.
  2. Медведев А. М. Печатные платы. Конструкции и материалы. М.: Техносфера. 2005.
  3. Из истории технологий печатных плат // Электроника-НТБ. 2004. № 5.
  4. Новинки электронной техники. Фирма Intel возвещает эру трехмерных транзисторов. Альтернатива традиционным планарным приборам // Электроника-НТБ. 2002. № 6.
  5. Истинно трехмерные микросхемы - первое приближение // Компоненты и технологии. 2004. № 4.
  6. Мокеев М. Н, Лапин М. С. Технологические процессы и системы производства тканых монтажных плат и шлейфов. Л.: ЛДНТП 1988.
  7. Володарский О. Мне идет этот компьютер? Электроника, вплетенная в ткань, становится модной // Электроника-НТБ. 2003. № 8.
  8. Медведев А. М. Технология производства печатных плат. М.: Техносфера. 2005.
  9. Медведев А. М. Импульсная металлизация печатных плат // Технологии в электронной промышленности. 2005. № 4
  10. Печатные платы - линии развития, Владимир Уразаев,

Наша компания изготавливает печатные платы из высококачественных импортных материалов, начиная от типового FR4 и заканчивая СВЧ-материалами и полиимидом. В данном разделе мы определяем основные термины и понятия, применяемые в области проектирования и изготовления печатных плат. Раздел повествует о совсем простых вещах, знакомых каждому инженеру-конструктору. Однако и тут есть ряд нюансов, которые многие разработчики не всегда принимают во внимание.

*** Дополнительную информацию можно получить,

Конструкция многослойных печатных плат
Рассмотрим типовую конструкцию многослойной платы (рис. 1). В первом, наиболее распространенном, варианте внутренние слои платы формируются из двустороннего ламинированного медью стеклотекстолита, который называют «ядро». Наружные слои выполняются из медной фольги, спрессованной с внутренними слоями при помощи связующего — смолистого материала, называемого «препрег». После прессования при высокой температуре образуется «пирог» многослойной печатной платы, в котором далее сверлятся и металлизируются отверстия. Менее распространен второй вариант, когда внешние слои формируются из «ядер», скрепляемых препрегом. Это упрощенное описание, на основе данных вариантов существует множество других конструкций. Однако основной принцип состоит в том, что в качестве связующего материала между слоями выступает препрег. Очевидно, что не может быть ситуации, когда соседствуют два двусторонних «ядра» без прокладки из препрега, но структура фольга-препрег-фольга- препрег… и т. д. возможна, и часто используется в платах со сложными сочетаниями глухих и скрытых отверстий.


Глухие и скрытые отверстия
Термин «глухие отверстия» означает переходы, связывающие внешний слой с ближайшими внутренними слоями и не имеющие выхода на второй внешний слой. Он происходит от английского слова blind, и является аналогичным термину «слепые отверстия». Скрытые, или погребенные (от английского buried), отверстия выполнены во внутренних слоях и не имеют выхода наружу. Простейшие варианты глухих и скрытых отверстий показаны на рис. 2. Их применение оправдано в случае очень плотной разводки или для плат, очень насыщенных планарными компонентами с обеих сторон. Наличие этих отверстий приводит к удорожанию стоимости платы от полутора до нескольких раз, но во многих случаях, особенно при трассировке микросхем в корпусе BGA с маленьким шагом, без них не обойтись. Есть различные способы формирования таких переходных отверстий, они более подробно раскрываются в разделе , а пока рассмотрим более подробно материалы, из которых конструируется многослойная плата.

Таблица 1. Виды и параметры материалов, применяемых для многослойных печатных плат
Вид Состав Tg Dk Стоимость
FR4 Слоистый эпоксидный материал из стекловолокна > 130°C 4.7 1 (базовая)
FR4 High Tg, FR5 Материал со сшитой сеткой, повышенная термостойкость (RoHS-совместимый) > 160°C 4,6 1,2…1,4
RCC Эпоксидный материал без стеклянной тканой основы > 130°C 4,0 1,3…1,5
PD Полиимидная смола с арамидной основой 260°C 3,5-4,6 5…6,5
PTFE Политетрафлуор-этилен со стеклом или керамикой (СВЧ) 240-280°C 2,2-10,2 32…70

Tg — температура стеклования (разрушения структуры)
Dk — диэлектрическая постоянная

Базовые диэлектрики для печатных плат
Основные виды и параметры материалов, применяемых для изготовления МПП, приведены в таблице 1. Типовые конструкции печатных плат основаны на применении стандартного стеклотекстолита типа FR4, с рабочей температурой, как правило, от -50 до +110 °C, температурой стеклования (разрушения) Tg около 135 °C. Диэлектрическая постоянная Dk у него может быть от 3,8 до 4,5, в зависимости от поставщика и вида материала. При повышенных требованиях к термостойкости или при монтаже плат в печи по бессвинцовой технологии (t до 260 °C) применяется высокотемпературный FR4 High Tg или FR5. При требованиях к постоянной работе на высоких температурах или при резких перепадах температур применяется полиимид. Кроме того, полиимид используют для изготовления плат повышенной надежности, для военных применений, а также в случаях, когда требуется повышенная электрическая прочность. Для плат с СВЧ-цепями (более 2 ГГц) применяются отдельные слои СВЧ-материала, или плата целиком делается из СВЧ-материала (рис. 3). Наиболее известные поставщики специальных материалов — фирмы Rogers, Arlon, Taconic, Dupont. Стоимость этих материалов выше, чем FR4, и условно показана в последнем столбце таблицы 1 относительно стоимости FR4. Примеры плат с разными видами диэлектрика показаны на рис. 4, 5.

Толщина материала
Знание доступных толщин материалов важно инженеру не только для формирования общей толщины платы. При проектировании МПП разработчики сталкиваются с такими задачами, как:
- расчет волнового сопротивления проводников на плате;
- расчет величины межслойной высоковольтной изоляции;
- выбор структуры глухих и скрытых отверстий.
Доступные варианты и толщины различных материалов приведены в таблицах 2-6. Следует учитывать, что допуск на толщину материала обычно составляет до ±10%, поэтому и допуск на толщину готовой многослойной платы не может быть менее ±10%.

Таблица 2. Двусторонние «ядра» FR4 для внутренних слоев печатной платы

Толщина диэлектрика и толщина меди 5 мкм 17 мкм 35 мкм 70 мкм 105 мкм
0,050 мм . . . з з
0,075 мм м . . з з
0,100 мм . . . з з
0,150 мм
0,200 мм м . . з з
0,250 мм
0,300 мм
0,350 мм м . . з з
0,400 мм . . . з з
0,450 мм
0,710 мм м . . з з
0,930 мм м . . . з
1,000 мм . . . . з
Более 1 мм . . . . з

Как правило, в наличии;
з - По запросу (имеется в наличии не всегда)
м - Можно изготовить;
Примечание: для обеспечения надежности готовых плат важно знать, что для внутренних слоев зарубежные мы предпочитаем использовать ядра с фольгой 35 мкм, а не 18 мкм (даже при ширине проводника и зазора 0,1 мм). Это повышает надежность печатных плат.
Диэлектрическая проницаемость ядер FR4 может составлять от 3.8 до 4.4 в зависимости от марки.

Таблица 3. Препрег («связующий» слой) для многослойных печатных плат

Тип препрега Толщина после прессования Возможное отклонение
Основные
1080 0,066 мм -0,005/+0,020 мм
2116 0,105 мм -0,005/+0,020 мм
7628 0,180 мм -0,005/+0,025 мм
Дополнительно
106 no flow 0,050 мм -0,005/+0,020 мм
1080 no flow 0,066 мм -0,005/+0,020 мм
2113 0,100 мм -0,005/+0,025 мм

Диэлектрическая проницаемость препрега FR4 может составлять от 3.8 до 4.4 в зависимости от марки.
Уточняйте этот параметр для конкретного материала у наших инженеров по email

Таблица 4. Материалы СВЧ фирмы Rogers для печатных плат

Материал Dk* Потери Толщина диэлектрика, мм Толщина фольги, мкм
Ro4003 3,38 0,2 18 или 35
0,51 18 или 35
0,81 18 или 35
Ro4350 3,48 0,17 18 или 35
0,25 18 или 35
0,51 18 или 35
0,762 18
1,52 35
Препрег Ro4403 3,17 0,1 --
Препрег Ro4450 3,54 0,1 --

* Dk — диэлектрическая проницаемость

Таблица 5. Материалы СВЧ фирмы Arlon для МПП

Материал Диэлектрическая
проницаемость (Dk)
Толщина
диэлектрика, мм
Толщина
фольги, мкм
AR-1000 10 0,61±0,05 18
AD600L 6 0,787±0,08 35
AD255IM 2,55 0,762±0,05 35
AD350A 3,5 0,508±0,05
0,762±0,05
35
35
DICLAD527 2,5 0,508±0,038
0,762±0,05
1,52±0,08
35
35
35
25N 3,38 0,508
0,762
18 или 35
25N 1080pp
pre-preg
3,38 0,099 --
25N 2112pp
pre-preg
3,38 0,147 --
25FR 3,58 0,508
0,762
18 или 35
25FR 1080pp
pre-preg
3,58 0,099 --
25FR 2112pp
pre-preg
3,58 0,147 --

Примечание: СВЧ-материалы не всегда есть на складе, и срок их поставки может доходить до 1 месяца. При выборе конструкции платы надо уточнить состояние склада производителя МПП.

Dk — Диэлектрическая проницаемость
Tg — температура стеклования

Хочется отметить важность следующих моментов:
1. В принципе доступны все номиналы ядер FR4 от 0,1 до 1,0 мм с шагом 0,1 мм. Однако при проектировании срочных заказов следует заранее уточнять наличие материалов на складе у производителя ПП.
2. Когда речь идет о толщине материала - у материалов, предназначенных для изготовления двусторонних плат, толщина материала указывается включая медь. Толщины «ядра» для внутренних слоев МПП задаются в документации без толщины меди.
Пример 1: материал FR4, 1,6/35/35 имеет толщину диэлектрика: 1,6-(2x35 мкм)=1,53 мм (с допуском ±10%).
Пример 2: ядро FR4, 0,2/35/35 имеет толщину диэлектрика: 200 мкм (с допуском ±10%) и полную толщину: 200 мкм+(2x35 мкм)=270 мкм.
3. Обеспечение надежности. Допустимое количество смежных слоев препрега вМПП - не менее 2 и не более 4. Возможность же использования одиночного слоя препрега между «ядрами» зависит от характера рисунка и от толщины смежных слоев меди. Чем толще медь и чем насыщенней рисунок проводников, тем сложнее заполнить смолой пространство между проводниками. А от качества заполнения зависит надежность платы.
Пример: медь 17 мкм - можно использовать 1 слой 1080, 2116 или 106; медь 35 мкм - можно использовать 1 слой только для 2116.

Покрытия площадок печатной платы
Рассмотрим, какие бывают покрытия медных площадок. Наиболее часто площадки покрываются сплавом олово-свинец, или ПОС. Способ нанесения и выравнивания поверхности припоя называют HAL или HASL (от английского Hot Air Solder Leveling — выравнивание припоя горячим воздухом). Это покрытие обеспечивает наилучшую паяемость площадок. Однако на смену ему приходят более современные покрытия, как правило, совместимые с требованиями международной директивы RoHS. Эта директива требует запретить присутствие вредных веществ, в том числе свинца, в продукции. Пока что действие RoHS не распространяется на территорию нашей страны, однако помнить о ее существовании небесполезно. Проблемы, связанные с RoHS, будут описаны нами в одном из последующих разделов, пока же давайте ознакомимся с возможными вариантами покрытия площадок МПП в таблице 7. HASL применяется повсеместно, если нет иных требований. Иммерсионное (химическое) золочение используется для обеспечения более ровной поверхности платы (особенно это важно для площадок BGA), однако имеет несколько более низкую паяемость. Пайка в печи выполняется примерно по той же технологии, что и HASL, но ручная пайка требует применения специальных флюсов. Органическое покрытие, или OSP, защищает поверхность меди от окисления. Его недостаток — малый срок сохранения паяемости (менее 6 месяцев). Иммерсионное олово обеспечивает ровную поверхность и хорошую паяемость, хотя тоже имеет ограниченный срок пригодности для пайки. Бессвинцовый HAL имеет те же свойства, что и свинец-содержащий, но состав припоя — примерно 99,8% олова и 0,2% добавок. Контакты ножевых разъемов, подвергающихся трению при эксплуатации платы, гальваническим способом покрывают более толстым и более жестким слоем золота. Для обоих видов золочения применяется никелевый подслой для предотвращения диффузии золота.

Таблица 7. Покрытия площадок печатной платы

Тип Описание Толщина
HASL, HAL
(hot air solder leveling)
ПОС-61 или ПОС-63,
оплавленный и выровненный горячим воздухом
15-25 мкм
Immersion gold, ENIG Иммерсионное золочение по подслою никеля Au 0,05-0,1 мкм/Ni 5 мкм
OSP, Entek Органическое покрытие,
защищает поверхность меди от окисления до пайки
При пайке
полностью растворяется
Immersion tin Иммерсионное олово, более плоская поверхность, чем HASL 10-15 мкм
Lead-free HAL Бессвинцовое лужение 15-25 мкм
Hard gold, gold fingers Гальваническое золочение контактов разъема по подслою никеля Au 0,2-0,5 мкм/Ni 5 мкм

Примечание: все покрытия, кроме HASL, совместимы с директивой RoHS и подходят для бессвинцовой пайки.

Защитные и другие виды покрытий печатной платы
Для полноты картины рассмотрим функциональное назначение и материалы покрытий печатной платы.
- Паяльная маска — наносится на поверхность платы для защиты проводников от случайного замыкания и грязи, а также для защиты стеклотекстолита от термоударов при пайке. Маска не несет другой функциональной нагрузки и не может служить защитой от влаги, плесени, пробоя и т. д. (за исключением случаев применения специальных видов масок).
- Маркировка — наносится на плату краской поверх маски для упрощения идентификации самой платы и расположенных на ней компонентов.
- Отслаиваемая маска — наносится на заданные участки платы, которые надо временно защитить, например, от пайки. В дальнейшем ее легко удалить, так как она представляет собой резиноподобный компаунд и просто отслаивается.
- Карбоновое контактное покрытие — наносится в определенные места платы как контактные поля для клавиатур. Покрытие имеет хорошую проводимость, не окисляется и износостойко.
- Графитовые резистивные элементы — могут наноситься на поверхность платы для выполнения функции резисторов. К сожалению, точность выполнения номиналов невысока — не точнее ±20% (с лазерной подгонкой— до 5%).
- Серебряные контактные перемычки — могут наноситься как дополнительные проводники, создавая еще один проводящий слой при недостатке места для трассировки. Применяются в основном для однослойных и двусторонних печатных плат.

Таблица 8. Покрытия поверхности печатной платы

Тип Назначение и особенности
Паяльная маска Для защиты при пайке
Цвет: зеленый, синий, красный, желтый, черный, белый
Маркировка Для идентификации
Цвет: белый, желтый, черный
Отслаиваемая маска Для временной защиты поверхности
При необходимости легко удаляется
Карбон Для создания клавиатур
Имеет высокую износостойкость
Графит Для создания резисторов
Желательна лазерная подгонка
Серебряное покрытие Для создания перемычек
Используется для ОПП и ДПП

Заключение
Выбор материалов велик, но, к сожалению, часто при изготовлении малых и средних серий печатных плат камнем преткновения становится наличие нужных материалов на складе завода - производителя МПП. Поэтому перед проектированием МПП, особенно если речь идет о создании нетиповой конструкции и применении нетиповых материалов, надо обязательно договориться с производителем об используемых в МПП материалах и толщинах слоев, а может быть, и заказать эти материалы заблаговременно.

Наша компания изготавливает печатные плат ы из высококачественных отечественных и импортных материалов, начиная от типового FR4 и заканчивая СВЧ -материалами ФАФ.

Типовые конструкции печатных плат основаны на применении стандартного стеклотекстолит а типа FR4, с рабочей температурой от –50 до +110 °C, и температурой стеклования Tg (размягчения) около 135 °C.

При повышенных требованиях к термостойкости или при монтаж е плат в печи по бессвинцовой технологии (t до 260 °C) применяется высокотемпературный FR4 High Tg.

Базовые материалы для печатных плат :

Tолщина меди, мкм

Толщина диэлектрика,мм

5 18 35 50 70 105
Фольга медная
0.0 +/- + + + + +/-
Односторонний T111 (алюминий)
1.60 +
Односторонний HA50 (алюминий)
1.10 +
1.60 +
2.00 +/-
Односторонний FR-4
0.10 +/- +/-
0.15 +/-
1,00 +
1,50 +
2,00 +
СФ 2,00 +

Tолщина меди, мкм

Толщина диэлектрика,мм

5 18 35 50 70 105
Двухсторонний FR-4
0.10 + +
0.15 + +
0,20 + +
СТФ 0,20 +/-
0,25 + +
0,36 + +
0,51 + +
0,71 + +
1,00 + + +/-
1,50 +/- + + + + +
СФ 1,50 +/-
2,00 + + + +/-
2,50 +/- +/-
3,00 +/- +/-

Tолщина меди, мкм

Толщина диэлектрика,мм

5 18 35 50 70 105
Двухсторонний FR-4 Tg 180
0.10 + +
0.15 + +
0,20 + +
0,25 + +
0,36 + +
0,51 + +
0,71 + +
1,00 + +
1,5 + +
2,00 + +
Двухсторонний МИ 1222
1,50 + +
2,00 +

Tолщина меди, мкм

Толщина диэлектрика,мм

5 18 35 50 70 105
Двухсторонний ФАФ-4Д
0,50 +/-
1,00 +/-
1,50 +/-
2,00 +
Двухсторонний Rogers RO-3003
0,25 +
0,50 +
0,76 +
1,52 +
Двухсторонний Rogers RO-4350
0,25 +
0,50 +
0,76 +
1,52 +
Двухсторонний Rogers RO-4003C
0,22 +
0,50 +

"+" - Как правило, в наличии

"+/-" - По запросу (имеется в наличии не всегда)

Препрег («связующий» слой) для многослойных печатных плат

Диэлектрическая проницаемость препрега FR4 может составлять от 3.8 до 4.4 в зависимости от марки.

FR-4

- стеклотекстолит фольгированный с номинальной толщиной от 0.1 до 3 мм, облицованный медной фольгой толщиной от 18 до 105 мкм с одной или двух сторон, производства Zhejiang Huazheng New Material. На центральном слое обычно находится логотип производителя, цвет его отражает класс горючести данного материала (красный - UL94-VO, синий - UL94-HB). Обычно, FR-4 - прозрачен, стандартный зелёный цвет определяется цветом паяльной маски, нанесённой на законченную печатную плат у

VT-47 (FR-4 Tg 180°C)

- стеклотекстолит фольгированный FR-4 и препреги с высокой температурой стеклования Tg=180 и низким коэффициентом температурного расширения.
  • Высокая температура стеклования FR-4 Tg 180°C
  • Превосходная термостойкость
  • Устойчивость стекловолокна и смолы к процессам электрохимической коррозии(Conductive Anodic Filament (CAF))
  • UV-блокировка
  • Низкий температурный коэффициент расширения по оси Z

МИ 1222

представляет собой слоистый прессованный материал на основе стеклоткани, пропитанной эпоксидным связующим, облицованный с одной или двух сторон медной электролитической фольгой.
  • поверхностное электрическое сопротивление (Ом): 7 х 1011;
  • удельное объемное электрическое сопротивление (Ом м): 1 х 1012;
  • диэлектрическая проницаемость: 4,8;
  • прочность на отслаивание фольги (Н): 1,8.

ФАФ-4Д

представляют собой армированный стеклотканью фторопласт, облицованный с обеих сторон медной фольгой. Применение:- в качестве оснований печатных плат работающих в диапазоне СВЧ ; - электрическая изоляция для печатных элементов приемно-передающей аппаратуры;- способны длительно работать в интервале температур от -60 до +250° С.
  • Прочность сцепления фольги с основанием на полоску 10 мм, Н (кгс), не менее 17,6(1,8)
  • Тангенс угла диэлектрических потерь при частоте 106 Гц, не более 7 х 10-4
  • Диэлектрическая проницаемость при частоте 1 МГц 2,5 ± 0,1

F4BM350

представляют собой фторопластовый армированный фольгированный ламинат толщиной 1.5 и 2мм и медной фольгой толщиной 0,035. Применение:- в качестве оснований печатных плат работающих в диапазоне СВЧ , способных длительно работать в интервале температур от -60 до +260° С. Условное обозначение – F4BM350, где F4B обозначает, что листы изготовлены прессованием, M – листы облицованы с двух сторон медной фольгой, а цифра 350 означают диэлектрическую проницаемость – 3,50 соответственно.
  • Тангенс угла диэлектрических потерь при частоте 10ГГц, не более 7х10-4
  • Диэлектрическая проницаемость при частоте 10 ГГц 3,5 ± 2%
  • Рабочая температура -60 +260° С
  • Выпускаемые размеры листов, мм (предельное отклонение по ширине и длине листа 10 мм.) 500х500

HA50

материал из теплопроводящего полимера на основе керамики с алюминиевым основанием.

Внимание: В наличии есть Type 1 и Type 3, указывайте тип при заказ е.

T111

материал из теплопроводящего полимера на основе керамики с алюминиевым основанием, используются в том случае, когда предполагается использовать компоненты, выделяющие значительную тепловую мощность (например сверхяркие светодиоды, лазерные излучатели и т.д.). Основными свойствами материала являются отличное рассеяние тепла и повышенная электрическая прочность диэлектрика при воздействии высоких напряжений:
  • Толщина алюминиевого основания – 1.5 мм
  • Толщина диэлектрика - 100 мкм
  • Толщина медной фольги – 35 мкм
  • Теплопроводность диэлектрика - 2.2 W/mK
  • Тепловое сопротивление диэлектрика - 0.7°C/W
  • Теплопроводность алюминиевой подложки (5052 - аналог АМг2,5) - 138 W/mK
  • Напряжение пробоя – 3 KV
  • Температура стеклования (Tg) – 130
  • Объёмное сопротивление – 108 MΩ×см
  • Поверхностное сопротивление - 106 MΩ
  • Наибольшее рабочее напряжение(CTI) – 600V

Защитные паяльные маски, применяемые при производстве печатных плат

Паяльная маска (она же «зеленка») – слой прочного материала, предназначенного для защиты проводников от попадания припоя и флюса при пайке, а также от перегрева. Маска закрывает проводники и оставляет открытыми контактные площадки и ножевые разъемы. Способ нанесения паяльной маски аналогичен нанесению фоторезиста – при помощи фотошаблона с рисунком площадок нанесённый на ПП материал маски засвечивается и полимеризуется, участки с площадками для пайки оказываются незасвеченными и маска смывается с них после проявки. Чаще всего паяльная маска наносится на слой меди. Поэтому перед её формированием защитный слой олова снимают – иначе олово под маской вспучится от нагревания плат ы при пайке.

PSR-4000 H85

Зеленого цвета, жидкая фоточувствительная термотверждаемая, толщиной 15-30 мкм, фирмы TAIYO INK (Япония).

Имеет одобрение на использование следующих организаций и производителей конечных изделий: NASA, IBM, Compaq, Lucent, Apple, AT&T, General Electric, Honeywell, General Motors, Ford, Daimler-Chrysler, Motorola, Intel, Micron, Ericsson, Thomson, Visteon, Alcatel, Sony, ABB, Nokia, Bosch, Epson, Airbus, Philips, Siemens, HP, Samsung, LG, NEC, Matsushita(Panasonic), Toshiba, Fujitsu, Mitsubishi, Hitachi, Toyota, Honda, Nissan и многих-многих других;

IMAGECURE XV-501

– цветная (красная, чёрная, синяя), жидкая двухкомпонентная паяльная маска , фирмы Coates Electrografics Ltd (Англия), толщина 15-30 мкм;

PSR-4000 LEW3

– белая, жидкая двухкомпонентная паяльная маска , фирмы TAIYO INK (Япония), толщина 15-30 мкм;

Laminar D5030

– сухая, пленочная маска фирмы DUNACHEM (Германия), толщина 75 мкм, обеспечивает тентирование переходных отверстий, обладает высокой адгезией.

Маркировка

SunChemical XZ81(белая)

SunChemical XZ85(черная)

Термоотверждаемые маркировочные краски, наносимые сеткографическим способом SunChemical(Великобритания).

Маркировочные чернила AGFA DiPaMat Legend Ink Wh04(белая)

Акриловые UV + термоотверждаемые чернила, для струйной печати маркировки на индустриальном принтере.

Что такое печатная платa

Печа́тная пла́та (англ. printed circuit board, PCB, или printed wiring board, PWB) - пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой.

В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).

В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на:

    односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика.

    двухсторонние (ДПП): два слоя фольги.

    многослойные (МПП): фольга не только на двух сторонах платы, но и во внутренних слоях диэлектрика. Многослойные печатные платы получаются склеиванием нескольких односторонних или двухсторонних плат.

По мере роста сложности проектируемых устройств и плотности монтажа, увеличивается количество слоёв на платах.

Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс. Также основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору. В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д), и керамика. Гибкие платы делают из полиимидных материалов, таких как каптон.

Какой материал будем использовать для изготовления плат

Самые распространненые, доступные материалы для изготовления плат - это Гетинакс и Стеклотекстолит. Гетинакс-бумага пропитанная бакелитовым лаком, текстолит стекловолокно с эпоксидкой. Однозначно будем использовать стеклотекстолит!

Стеклотекстолит фольгированный представляет собой листы, изготовленные на основе стеклотканей, пропитанных связующим на основе эпоксидных смол и облицованные с двух сторон медной электролитической гальваностойкой фольгой толщиной 35 мкм. Предельно допустимая температура от -60ºС до +105ºС. Имеет очень высокие механические и электроизоляционные свойства, хорошо поддается механической обработке резкой, сверлением, штамповкой.

Стеклотекстолит в основном используется одно или двухсторонний толщиной 1.5мм и с медной фольгой толщиной 35мкм или 18мкм. Мы будем использовать односторонний стеклотекстолит толщиной 0.8мм с фольгой толщиной 35мкм (почему будет подробно рассмотрено далее).

Методы изготовления печатных плат дома

Платы можно изготавливать химическим методом и механическим.

При химическом методе в тех местах где должны быть дорожки (рисунок) на плате на фольгу наносится защитный состав (лак, тонер, краска и т.д.). Далее плата погружается в специальный раствор (хлорное железо, перекись водорода и другие) который «разъедает» медную фольгу, но не действует на защитный состав. В итоге под защитным составом остается медь. Защитный состав в дальнейшем удаляется растворителем и остаётся готовая плата.

При механическом методе используется скальпель (при ручном изготовлении) или фрезерный станок. Специальная фреза делает бороздки на фольге, в итоге оставляя островки с фольгой - необходимый рисунок.

Фрезерные станки довольно дорогое удовольствие, а также сами фрезы дороги и имеют небольшой ресурс. Так что, этот метод мы не будем использовать.

Самый простой химический метод - ручной. Ризографом лаком рисуются дорожки на плате и потом травим раствором. Этот метод не позволяет делать сложные платы, с очень тонкими дорожками - так что это тоже не наш случай.


Следующий метод изготовления плат - с помощью фоторезиста. Это очень распространненая технология (на заводе платы делаются как раз этим методом) и она часто используется в домашних условиях. В интернет очень много статей и методик изготовления плат по этой технологии. Она дает очень хорошие и повторяемые результаты. Однако это тоже не наш вариант. Основная причина - довольно дорогие материалы (фоторезист, который к тому же портится со временем), а также дополнительные инструменты (УФ ламка засветки, ламинатор). Конечно, если у вас будет объемное производство плат дома - то фоторезист вне конкуренции - рекомендуем освоить его. Также стоит отметить, что оборудование и технология фоторезиста позволяет изготовливать шелкографию и защитные маски на платы.

С появлением лазерных принтеров радиолюбители стали активно их использовать для изготовления плат. Как известно, для печати лазерный принтер использует «тонер». Это специальный порошок, который под температурой спекается и прилипает к бумаге - в итоге получается рисунок. Тонер устойчив к различным химическим веществам, это позволяет использовать его как защитное покрытие на поверхности меди.

Итак, наш метод состоит в том, чтобы перенести тонер с бумаги на поверхность медной фольги и потом протравить плату специальным раствором для получения рисунка.

В связи с простотой использования данный метод заслужил очень большое распространение в радиолюбительстве. Если вы наберете в Yandex или Google как перенести тонер с бумаги на плату - то сразу найдёте такой термин как «ЛУТ» - лазерно утюжная технология. Платы по этой технологии делаются так: печатается рисунок дорожек в зеркальном варианте, бумага прикладывается к плате рисунком к меди, сверху данную бумагу гладим утюгом, тонер размягчяется и прилипает к плате. Бумага далее размачивается в воде и плата готова.

В интернет «миллион» статей о том как сделать плату по этой технологии. Но у данной технологии есть много минусов, которые требуют прямых рук и очень долгой пристройки себя к ней. То есть ее надо почувствовать. Платы не выходят с первого раза, получаются через раз. Есть много усовершенствований - использовать ламинатор (с переделкой - в обычном не хватает температуры), которые позволяют добиться очень хороших результатов. Даже есть методы построения специальных термопрессов, но все это опять требует специального оборудования. Основные недостатки ЛУТ технологии:

    перегрев - дорожки растекаются - становятся шире

    недогрев - дорожки остаютяся на бумаге

    бумага «прижаривается» к плате - даже при размокании сложно отходит - в итоге может повредится тонер. Очень много информации в интернете какую бумагу выбрать.

    Пористый тонер - после снятия бумаги в тонере остаются микропоры - через них плата тоже травится - получаются изъеденные дорожки

    повторяемость результата - сегодня отлично, завтра плохо, потом хорошо - стабильного результат добиться очень сложно - нужна строго постоянная температура прогрева тонера, нужно стабильное давление прижима платы.

К слову, у меня этим методом не получилось сделать плату. Пробовал делать и на журналах, и на мелованной бумаге. В итоге даже платы портил - от перегрева вздувалась медь.

В интернет почему-то незаслуженно мало информации про еще один метод переноса тонера - метод холодного химического переноса. Он основан на том факте, что тонер не растворяется спиртом, но растворяется ацетоном. В итоге, если подобрать такую смесь ацетона и спирта, которая будет только размягчать тонер - то его можно «переклеить» на плату с бумаги. Этот метод мне очень понравился и сразу дал свои плоды - первая плата была готова. Однако, как оказалось потом, я нигде не смог найти подробной информации, которая давала бы 100% результат. Нужен такой метод, которым плату мог сделать даже ребёнок. Но на второй раз плату сделать не вышло, потом опять и пришло долго подбирать нужные ингридиенты.

В итоге после долгих была разработана последовательность действий, подобраны все компоненты, которые дают если не 100% то 95% хорошего результата. И самое главное процесс настолько простой, что плату может сделать ребенок полностью самостоятельно. Вот этот метод и будем использовать. (конечно его можно и далее доводить до идеала - если у вас выйдет лучше - то пишите). Плюсы данного метода:

    все реактивы недорогие, доступные и безопасные

    не нужны дополнительные инструменты (утюги, лампы, ламинаторы - ничего, хотя нет - нужна кастрюля)

    нет возможности испортить плату - плата вообще не нагревается

    бумага отходит сама - видно результат перевода тонера - где перевод не вышел

    нет пор в тонере (они заклеиваются бумагой) - соответственно нет протравов

    делаем 1-2-3-4-5 и получаем всегда один и тот же результат - почти 100% повторяемость

Прежде чем начать, посмотрим какие платы нам нужны, и что мы сможем сделать дома данным методом.

Основные требования к изготовленным платам

Мы будем делать приборы на микроконтроллерах, с применением современных датчиков и микросхем. Микросхемы становятся все меньше и меньше. Соответственно необходимо выполнение следующих требований к платам:

    платы должны быть двух сторонними (как правило развести одностороннюю плату очень сложно, сделать дома четырехслойные платы довольно сложно, микроконтроллерам нужен земляной слой для защиты от помех)

    дорожки должны быть толщиной 0.2мм - такого размера вполне достаточно - 0.1мм было бы еще лучше - но есть вероятность протравов, отхода дорожек при пайке

    промежутки между дорожками - 0.2мм - этого достаточно практически для всех схем. Уменьшение зазора до 0.1мм чревато сливанием дорожек и сложностью в контроле платы на замыкания.

Мы не будем использовать защитные маски, а также делать шелкографию - это усложнит производство, и если вы делаете плату для себя, то в этом нет нужды. Опять же в интернет много информации на эту тему, и если есть желание вы можете навести «марафет» самостоятельно.

Мы не будем лудить платы, в этом тоже нет необходимости (если только вы не делаете прибор на 100лет). Для защиты мы будем использовать лак. Основная наша цель - быстро, качественно, дёшево в домашних условиях сделать плату для прибора.

Вот так выглядит готовая плата. сделанная нашим методом - дорожки 0.25 и 0.3, расстояния 0.2

Как сделать двухстороннюю плату из 2-ух односторонних

Одна из проблем изготовления двухсторонних плат - это совмещение сторон, так чтобы переходные отверстия совпадали. Обычно для этого делается «бутерброд». На листе бумаги печатается сразу 2 стороны. Лист сгибается пополам, на просвет точно совмещаются стороны с помощью специальных меток. Внутрь вкладывается двухсторонний текстолит. При методе ЛУТ такой бутерброд проглаживается утюгом и получается двухсторонняя плата.

Однако, при методе холодного переноса тонера сам перенос осуществляется с помощью жидкости. И поэтому очень сложно организовать процесс смачивания одной стороны одновременно с другой стороной. Это конечно тоже можно сделать, но с помощью специального приспособления - мини пресса (тисков). Берутся плотные листы бумаги - которые впитывают жидкость для переноса тонера. Листы смачиваются так, чтобы жидкость не капала, и лист держал форму. И дальше делается «бутерброд» - смоченный лист, лист туалетной бумаги для впитывания лишней жидкости, лист с рисунком, плата двухсторонняя, лист с рисунком, лист туалетной бумаги, опять смоченный лист. Все это зажимается вертикально в тиски. Но мы так делать не будем, мы поступим проще.

На форумах по изготовлению плат проскочила очень хорошая мысль - какая проблема делать двухстороннюю плату - берем нож и режем текстолит пополам. Так как стеклотекстолит - это слоеный материал, то это не сложно сделать при опредленной сноровке:


В итоге из одной двухсторонней платы толщиной 1.5мм получаем две односторонние половинки.


Далее делаем две платы, сверлим и все - они идеально совмещены. Ровно разрезать текстолит не всегда получалось, и в итоге пришла идея использовать сразу тонкий односторонний текстолит толщиной 0.8мм. Две половинки потом можно не склеивать, они будут держаться за счет запаяных перемычек в переходных отверстиях, кнопок, разъемов. Но если это необходимо без проблем можно склеить эпоксидным клеем.

Основные плюсы такого похода:

    Текстолит толщиной 0,8мм легко режется ножницами по бумаге! В любую форму, то есть очень легко обрезать под корпус.

    Тонкий текстолит - прозрачный - посветив фонарем снизу можно легко проверить корректность всех дорожек, замыкания, разрывы.

    Паять одну сторону проще - не мешают компоненты на другой стороне и легко можно контролировать спайки выводов микросхем- соединить стороны можно в самом конце

    Сверлить надо в два раза больше отверстий и отверстия могут чуть-чуть не совпасть

    Немного теряется жёсткость конструкции если не склеивать платы, а склеивать не очень удобно

    Односторонний стеклотекстолит толщиной 0.8мм трудно купить, в основном продается 1.5мм, но если не удалось достать, то можно раскроить ножем более толстый текстолит.

Перейдем к деталям.

Необходимые инструменты и химия

Нам понадобятся следующие ингридиенты:


Теперь когда все это есть, делаем по шагам.

1. Компоновка слоев платы на листе бумаги для печати c помощью InkScape

Автоматический цанговый набор:

Мы рекомендуем первый вариант - он дешевле. Далее необходимо к мотору припаять провода и выключатель (лучше кнопку). Кнопку лучше разместить на корпусе, чтобы удобнее было быстро включать и выключать моторчик. Остается подобрать блок питания, можно взять любой блок питания на 7-12в током 1А (можно и меньше), если такого блока питания нет, то может подойти зарядка по USB на 1-2А или батарейка Крона (только надо пробовать - не все зарядки любят моторы, мотор может не запустится).

Дрель готова, можно сверлить. Но вот только необходимо сверлить строго под углом 90градусов. Можно соорудить мини станок - в интернет есть различные схемы:

Но есть более простое решение.

Кондуктор для сверления

Чтобы сверлить ровно под 90 градусов достаточно изготовить кондуктор для сверления. Мы будем делать вот такой:

Изготовить его очень легко. Берем квадратик любого пластика. Кладем нашу дрель на стол или другую ровную поверхность. И сверлим в пластике нужным сверлом отверстие. Важно обеспечить ровное горизонтальное смещение дрели. Можно прислонить моторчик к стене или рейке и пластик тоже. Далее большим сверлом рассверлить отверстие под цангу. С обратной стороны рассверлить или срезать кусок пластика, чтобы было видно сверло. На низ можно приклеить нескользящую поверхность - бумагу или резинку. Такой кондуктор надо сделать под каждое сверло. Это обеспечит идеально точное сверление!

Такой вариант тоже подойдет, срезать сверху часть пластика и срезать уголок снизу.

Вот как производится сверление с его помощью:


Зажимаем сверло так, чтобы оно торчало на 2-3мм при полном погружении цанги. Ставим сверло на место где надо сверлить (при травлении платы у нас будет оставаться метка где сверлить в виде мини отверстия в меди - в Kicad мы специально ставили галку для этого, так что сверло будет само вставать туда), прижимаем кондуктор и включаем мотор - отверстие готово. Для подстветки можно использовать фонарик, положив его на стол.

Как уже мы писали ранее, сверлить можно только отверстия с одной стороны - там где подходят дорожки - вторую половину можно досверлить уже без кондуктора по направляющему первому отверстию. Это немного экономит силы.

8. Лужение платы

Зачем лудить платы - в основном для защиты меди от корозии. Основной минус лужения - перегрев платы, возможная порча дорожек. Если у вас нет паяльной станции - однозначо - не лудите плату! Если она есть, то риск минимальный.

Можно лудить плату сплавом РОЗЕ в кипящей воде, но он дорого стоит и его сложно достать. Лудить лучще обычным припоем. Чтобы сдеалать это качественно, очень тонким слоем надо сделать простое приспособление. Берем кусочек оплетки для выпайки деталей и одеваем ее на жало, прикручиваем проволокой к жалу, чтобы она не соскочила:

Плату покрываем флюсом - например ЛТИ120 и оплетку тоже. Теперь в оплетку набираем олово и ей водим по плате (красим)- получается отличный результат. Но по мере использования оплетка расподается и на плате начинают оставаться ворскинки медные - их обязательно надо убрать, а то будет замыкание! Увидеть это очень легко посветив фонарем с обратной стороны платы. При таком методе хорошо использовать или мощный паяльник (60ват) или сплав РОЗЕ.

В итоге, платы лучше не лудить, а покрывать лаком в самом конце- например PLASTIC 70, или простой акриловый лак купленный в автозапчастях KU-9004:

Тонкий тюнинг метода переноса тонера

В методе есть два момента, которые поддаются тюнингу, и могут не получиться сразу. Для их настройки, необходимо в Kicad сделать тестовую плату, дорожки по квадратной спирали разной толщины, от 0.3 до 0.1 мм и с разными промежутками, от 0.3 до 0.1 мм. Лучше сразу распечатать несколько таких образцов на одном листе и провести подстройку.

Возможные проблемы, которые мы будем устранять:

1) дорожки могут менять геометрию - растекаться, становится шире, обычно очень не значительно, до 0.1мм - но это не хорошо

2) тонер может плохо прилипать к плате, отходить при снятии бумаги, плохо держаться на плате

Первая и вторая проблема взаимосвязаны. Решаю первую, вы приходите ко второй. Надо найти компромисс.

Дорожки могут растекаться по двум причинам - слишкой большой груз прижима, слишком много ацетона в составе полученной жидкости. В первую очередь надо попробовать уменьшить груз. Минимальный груз - около 800гр, ниже уменьшать не стоит. Соответственно груз кладем без всякого прижима - просто ставим сверху и все. Обязательно должно быть 2-3 слоя туалетной бумаги для хорошего впитывания лишнего раствора. Вы должны добиться того, что после снятия груза, бумага должна быть белая, без фиолетовых подтеков. Такие подтеки говорят о сильном расплавлении тонера. Если грузом отрегулировать не получилось, дорожки все равно расплываются, то увеличиваем долю жидкости для снятия лака в растворе. Можно увеличить до 3 части жидкости и 1 часть ацетона.

Вторая проблема, если нет нарушения геометрии, говорит о недостаточном весе груза или малом количестве ацетона. Начать опять же стоит с груза. Больше 3кг смысла не имеет. Если тонер все равно плохо держится на плате, то надо увеличить количество ацетона.

Эта проблема в основном возникает, когда вы меняете жидкость для снятия лака. К сожалению, это не постоянный и не чистый компонент, но на другой его заменить не получилось. Пробовал заменить его спиртом, но видимо получается не однородная смесь и тонер прилипает какими-то вкраплениями. Также жидкость для снятия лака может содержать ацетон, тогда ее надо будет меньше. В общем, такой тюнинг вам надо будет провести один раз, пока не закончится жидкость.

Плата готова

Если вы не будете сразу запаивать плату, то ее необходимо защитить. Самый простой способ сделать это - покрыть спиртоканифольным флюсом. Перед пайкой это покрытие надо будет снять например изопропиловым спиртом.

Альтернативные варианты

Вы также можете сделать плату:

Дополнительно, сейчас набирает популярность сервис изготовления плат на заказ - например Easy EDA . Если необходима более сложная плата (например 4-х слойная) - то это единственный выход.