Главная · Счетчики · Углекислый газ в помещении. Уровень co2 в помещении норма

Углекислый газ в помещении. Уровень co2 в помещении норма

Заполнение пассажирами салона транспорта может быстро привести к опасному увеличению концентрации углекислого газа в воздухе. Переизбыток CO₂ может вызвать сонливость, физическую усталость и снижение концентрации внимания. Эта проблема актуальна для вагонов поездов, салонов автобусов, самолётов и многих других видов транспорта. Для её решения существуют специальные сенсоры климат-контроля, которые могут отслеживать концентрацию CO₂ в воздухе. Собранные сенсором данные могут помочь увеличить эффективность системы кондиционирования воздуха, что, в свою очередь, позволит снизить энергопотребление транспортного средства.

Зачем измерять уровень CO₂ в салоне?

Автобус, вагон метро, самолёт - конструкции этих транспортных средств становятся всё более герметичными. И чем больше в салоне пассажиров, тем выше там концентрация углекислого газа. В сравнении с пустым салоном, уровень CO₂ в переполненном может быстро достичь критических значений. А это означает, что необходима система вентиляции.

Высокая концентрация углекислого газа в воздухе может вызывать ощутимую усталость и серьёзные нарушения концентрации внимания, что может быть крайне опасно для водителя. Так же, отсутствие вентиляции в салоне увеличивает вероятность распространения вирусных и бактериальных инфекций.

На данный момент в большинстве транспортных систем охлаждения используется фреон или аммиак. Но с каждым годом доля систем, работающих на CO₂, растёт, в связи с экологичностью и негорючестью этого газа. Поэтому сенсоры CO₂ актуальны и для отслеживания утечек систем охлаждения.

Из-за особенностей конструкции транспортных средств к используемым в них датчикам CO 2 могут предъявляться специальные требования. Из-за дефицита свободного пространства, габариты всех элементов систем вентиляции, в том числе и датчиков давления, должны быть достаточно небольшими. Также в случае поезда или автомобиля окружающая среда может быть недостаточно чистой, поэтому датчик CO 2 должен обладать повышенным классом защиты, не допускающим попадания внутрь корпуса пыли. Данным условиям прекрасно удовлетворяет датчик , обладающий миниатюрными габаритами, а также имеющий класс защиты IP50.

Как работает система климат-контроля? (Как это работает?)

Концентрация углекислого газа в пустом транспортном средстве - около 400 ppm, что является нормальной уличным показателем. Как упоминалось ранее, показатель концентрации CO₂ в салоне растёт вместе с количеством пассажиров. Оптимальным решением в таком случае будет использование адаптивных систем вентиляции. Сенсоры системы будут непрерывно измерять и оценивать содержание углекислого газа, благодаря чему вентиляционный комплекс сможет поддерживать требуемый уровень свежести воздуха.

Экономия средств

Согласно исследованиям инженеров SenseAir, использование адаптивных систем вентиляции поможет сохранить до 10% топлива, даже в режиме максимального охлаждения. Применение таких систем экологично и экономично.

Так же, правильная вентиляция уменьшает риск многих заболеваний среди персонала и пассажиров транспортного средства, что исключает сопутствующие болезням издержки.

Чистый воздух в салоне значительно уменьшает количество транспортных происшествий, связанных с сонливостью и сниженной концентрацией внимания водителя. Вероятность возникновения соответствующих издержек также уменьшается.

Ключевые преимущества

  • Атмосфера салона, благоприятная для здоровья
  • Энергосбережение
  • Экологичность
  • Уменьшение рисков транспортных происшествий

Данная информация предназначена для специалистов в области здравоохранения и фармацевтики. Пациенты не должны использовать эту информацию в качестве медицинских советов или рекомендаций.

Основы СО 2 мониторинга

Практическое руководство (по материалам фирмы Datex)
Новосибирск 1995 г.

1.Введение 2

2.Что такое капнограмма. 3

  • Что такое PetСО 2 4
  • 3.Как образуется СО 2 в выдыхаемом воздухе 4

  • Отличие PetCO 2 от напряжения СО 2 в артериальной крови 5
  • Небольшое артериально-альвеолярное различие (aAДСО 2) 5
  • Основные причины увеличения аАДСО 2 5
  • 4.Почему измеряется PetCO 2 6

  • Клинические преимущества СО 2 мониторинга 6
  • Использование PetCO 2 для контроля вентиляции 7
  • Физиологические факторы, управляющие удалением СО 2 7
  • Что такое альвеолярная вентиляция 7
  • 5.Диагностика гипер- и гиповентиляции 7

  • Нормокапния и нормовентиляция 8
  • Гипокапния и гипервентиляция 8
  • Гиперкапния и гиповентиляция 9
  • 6.Интерпретация капнограммы и тренда СО 2 9

    7.Практическое руководство по СО2 мониторингу 15

  • Основное правило для размещения отборника газа 15
  • Удаление газа с выхода монитора 15
  • Мониторинг при слабых воздушных потоках 15
  • 8.СО2 мониторинг в посленаркозный период 16

    Приложение 18

    Практическое руководство составлено по материалам фирмы Datex научно-производственной фирмой ЗАО “ЛАСПЕК”

    Перевод и компьютерная верстка - Д.Е. Грошев
    Редактор к.м.н. - О.В. Гришин.

    1 Введение.

    Эти методические рекомендации рассчитаны на анестезиологов и реаниматологов, не знакомых с СО 2 -мониторингом, и имеют целью в простой форме ответить на вопрос: "зачем и как производится СО 2 -мониторинг?”. Освоение нескольких основных принципов СО 2 -мониторинга обеспечивает врача богатой информацией о состоянии пациента и функционировании наркозной аппаратуры. Список литературы, рекомендуемой для более подробного изучения, приведен в разделе "Справочная литература".

    Проведение СО 2 -мониторинга в анестезиологии и реаниматологии считается очень важным и даже необходимым условием эффективного наблюдения за больным с управляемым или нарушенным дыханием, а также с нормальным дыханием при угрозе его нарушения. Быстрый рост популярности СО 2 -мониторинга отражает его значение в обеспечении безопасности пациента. Многие потенциально опасные ситуации с его помощью обнаруживаются на самых ранних этапах развития, предоставляя врачу достаточное время для анализа и исправления развивающегося критического состояния. Кроме того мониторирование значения концентрации СО 2 в конце выдоха (PetCO 2) и анализ его тренда дают наиболее объективную диагностическую информацию о состоянии пациента при наркозе.

    В таблице приведена оценка относительного значения ряда методик для выявления критических ситуаций. (Whitcer C. et al. Anasthetic mishaps and the cost of monitoring: a proposed standart for monitoring equipment. J. Clin Monit 1988; 4:5-15p.).


    Пульсоксиметр

    Капнограф

    Спирометр

    Тонометр

    Фонендоскоп

    Галометр

    Анализатор О 2

    Термометр

    2.Что такое капнограмма.

    Кривая изменения концентрации СО 2 во времени называется капнограммой. Она отражает различные стадии выдоха. Капнограмма является важным диагностическим средством, так как ее форма практически одинакова у здоровых людей. Поэтому следует анализировать любое изменение формы капнограммы.

    *Мертвым пространством называется часть воздушных путей, где не происходит газообмен. В случае аппаратного мониторинга CO 2 в формировании капнограммы выдоха принимают участие следующие типы мертвого пространства. Механическое или аппаратное мертвое пространство - состоит из эндотрахеальной трубки и соединительных шлангов. Анатомическое мертвое пространство - составляют трахея и бронхи. Альвеолярное мертвое пространство - составляет часть дыхательных путей в которой не происходит газообмен, хотя они и вентилируются.

    Что такое PetCO 2 .

    Максимальная концентрация СО 2 в конце спокойного выдоха PetCO 2 (end-tidal CO 2) очень тесно связана с альвеолярной концентрацией СО 2 , так как она регистрируется во время поступления воздуха из альвеол.

    3. Как образуется СО 2 в выдыхаемом воздухе.

    Углекислый газ (СО 2) выделяется всеми клетками во всех тканях организма, как продукт метаболизма. СО 2 является конечным продуктом процесса окисления глюкозы, и должен постоянно удаляться из тканей.

    Из клеток СО 2 диффундирует в капиллярную кровь, так как в ней концентрация СО 2 поддерживается более низкой. Из капиллярной крови СО 2 далее транспортируется по венам от периферии к правому предсердию.

    Сердце прокачивает венозную кровь через малый круг кровообращения к легким где происходит газообмен.

    Легкие состоят приблизительно из 300 миллионов альвеол, в которых кровь насыщается кислородом при легочном кровообращении. Стенки альвеол являются по существу очень тонкими мембранами (с общей площадью поверхности около 100м 2), позволяющими газам легко диффундировать между легочной кровью и альвеолярным воздухом.

    СО 2 диффундирует из крови в альвеолярное пространство. При дыхании (или искусственной вентиляции), концентрация СО 2 в альвеолах постоянно сохраняется ниже, чем в капиллярной крови легких. При вдохе “свежий” воздух поступает в легкие и смешивается с альвеолярным, слегка снижая альвеолярную концентрацию СО 2 . При выдохе СО 2 удаляется из организма. Газ, выходящий в конце выдоха, практически полностью соответствует альвеолярному газу.

    На протяжении выдоха воздух покидает различные участки легких, смешиваясь так, что СО 2 -монитор измеряет только усредненную концентрацию СО 2 . Диффузия СО 2 на альвеолярном уровне является непрерывным процессом. На капнограмме этот процесс отражается только в последней фазе выдоха. В других фазах наблюдается значительная динамика капнограммы, так как она отражает концентрацию СО 2 как во вдыхаемом, так и в выдыхаемом воздухе.

    Сравнительный анализ артериальной крови и альвеолярного воздуха показывает, что величина PetCO 2 довольно близко отслеживает уровень напряжения СО 2 в крови (РаСО 2), но все же они не равны. В норме PetCO 2 на 1-3 мм рт.ст. ниже чем РаСО 2 . Однако у пациентов с легочной патологией различия могут быть значительно большими. Причины этого сложные и выявление увеличения этого различия дает нам дополнительный диагностический параметр: артериально-альвеолярное различие (аАDСО 2). Фактически аАDСО 2 может рассматриваться как количественный показатель альвеолярного мертвого пространства, поэтому значительные его изменения должны исследоваться дополнительно.

    Небольшое артериально-альвеолярное различие.

    Артериально-альвеолярное различие является результатом особенностей процессов вентиляции и перфузии легочных альвеол. Даже у здорового пациента вентиляционно-перфузионное отношения отличаются в разных участках легких. При наркозе несоответствие вентиляции и перфузии обычно слегка возрастает, однако обычно это не имеет клинического значения.

    Основные причины увеличения аАДСО 2 .

    Снижение уровня газообмена происходит в той части респираторных отделов легких, которые не имеет достаточной перфузии, но тем не менее хорошо вентилируется. При выдохе воздух из этих участков легких будет смешиваться с обогащенным СО 2 альвеолярным воздухом из остальных участков легких, уменьшая PetCO 2 . При этом aADCО 2 будет увеличено. Такая вентиляция называется вентиляцией альвеолярного мертвого пространства.

    Возможными причинами вызывающими увеличение аАСО 2 являются:

      положение пациента (положение на боку)

      легочная гипоперфузия

      легочная тромбоэмболия.

    Рисунок А иллюстрирует эффект вентиляции альвеолярного мертвого пространства. В половине легких нет перфузии и, следовательно, газообмена. При выдохе альвеолярный газ смешивается и результирующая концентрация PetCO 2 будет в два раза меньше, чем РаСО 2 в крови. Для сравнения рисунок В иллюстрирует идеальную ситуацию, когда перфузия происходит во всем объеме легких и PetCO 2 =РАСО 2 =РаСО 2 .

    4. Почему измеряется PetCO 2 .

    СО 2 мониторинг дает информацию как о состоянии пациента, так и о системе обеспечения ИВЛ. Так как концентрация СО 2 зависит от многих факторов, она редко является достаточной для постановки специфического диагноза. Однако мониторирование СО 2 с быстродействующей индикацией и отображением концентрации СО 2 в каждом выдохе обеспечивает достаточный запас времени для принятия необходимых мер по исправлению ситуации.

    Клинические преимущества СО 2 мониторинга.

    В условиях стабильного состояния пациента (ИВЛ в сочетании с нормальной гемодинамикой) концентрация СО 2 тесно связана с изменением напряжения СО 2 в крови и, следовательно, является неинвазивным методом контроля РаСО 2 . Выделение СО 2 - величина довольно стабильная, поэтому резкие изменения PetCO 2 обычно отражают либо изменения кровообращения в малом круге (например легочную эмболию), либо легочной вентиляции (например отсоединение трубки или избыточная ИВЛ - гипервентиляция).

    Использование мониторинга СО 2 позволяет:

    • Быстро определить правильность интубации трахеи.
    • Быстро выявить нарушения в воздушном тракте (коннектор интубационной трубки, интубационная трубка, дыхательные пути) или в системе подачи воздуха (аппарат ИВЛ).

      Объективно, непрерывно, неинвазивно контролировать адекватность вентиляции.

      Распознавать нарушения в газообмене, легочном кровообращении и метаболизме.

      Обеспечивает контроль безопасного использования малопотоковых наркозных методик с присущим им экономичным расходом ингаляционных анестетиков.

      Уменьшает необходимость в частых рутинных анализах газа крови, так как тренд PetCO 2 отражает тренд РаСО 2 . Газоанализ крови становится необходим в случаях значимого отклонения тренда PetCO 2 .

    Общепринятые термины мониторинга СО 2

    “капно” - означает уровень СО 2 при выдохе(от греческого “kapnos” курить);“гипер” - значит слишком много; “гипо” - значит слишком мало.

    Использование PetCO 2 для контроля вентиляции.

    В норме при спокойном естественном дыхании газообменная функция легких обеспечивает парциальное давление СО 2 в крови (РаСО 2) около 40 мм рт.ст. Это происходит путем регулирования частоты и глубины дыхания. При увеличении выделения СО 2 (например, при физических нагрузках) пропорционально возрастает частота и глубина дыхания. Во время наркоза с применением мышечных релаксантов, анестезиолог должен обеспечить надлежащий уровень вентиляции. Обычно этот уровень оценивается путем расчета необходимой вентиляции по номограммам. Гораздо более эффективный способ контроля адекватной вентиляции основан на мониторировании СО 2 .

    Физиологические факторы, управляющие удалением СО 2 .

    Удаление СО 2 зависит от 3-х факторов: скорости метаболизма, состояния системы легочного кровообращения и состояния системы альвеолярной вентиляции.

    Необходимо помнить, что эти 3 фактора взаимосвязаны. Изменение кислотно-основного баланса (или состояния КОС), вызванное различными причинами, может так же влиять на удаление СО 2 .

    Опыт диагностики различных критических ситуаций во время ИВЛ приходит довольно быстро. Так, если стационарное значение СО 2 возрастает при постоянной вентиляции, изменения в PetCO 2 обычно возникают из-за изменения в легочном кровообращении. При этом следует обратить внимание на изменения метаболизма или КОС.

    В процессе наркоза, скорость метаболизма обычно меняется слабо (основным исключением является редкий случай злокачественной гипертермии, который вызывает резкий рост PetCO 2 .)

    Что такое альвеолярная вентиляция.

    Когда уровень вентиляции устанавливается, поддерживая стабильное и в пределах нормы PetCO 2 , то нет необходимости проводить какие-либо расчеты. Вместе с тем, чтобы быть готовым к любой ситуации, полезно знать особенности легочной вентиляции. Как уже говорилось, часть воздуха при дыхании не достигает альвеол и остается в механическом (соединительный коннектор, клапанная коробка, эндотрахеальная трубка) и анатомическом (трахея, бронхиальное дерево) мертвом пространстве, где газообмен не происходит. Чтобы рассчитать объем альвеолярной вентиляции в л/мин, который собственно и обеспечивает газообмен в легких, необходимо вычесть объем общего мертвого пространства из дыхательного объема. Умножив объем воздуха, проникающего в альвеолярные пространства, на частоту дыхания, можно получить альвеолярную минутную вентиляцию - показатель эффективной вентиляции.

    5. Диагностика гипер- и гиповентиляции.

    После начала наркоза и проведения интубации трахеи, анестезия обычно поддерживается системой искусственной вентиляции в стационарном состоянии выделения СО 2 . Заметим, что в течении продолжительной операции (более 1.5 часов), из-за угнетающего действия анестетиков и развивающейся гипотермии, слегка снижается метаболизм пациента и наблюдается постепенное уменьшение PetCO 2

    Нормокапния и нормовентиляция.

    Альвеолярная вентиляция обычно устанавливается так, чтобы обеспечить нормокапнию - то есть PetCO 2 должно находиться в диапазоне 4.8 - 5.7 % (36 -43 мм рт.ст.). Такая вентиляция называется нормовентиляцией, так как она характерна для здоровых людей. Иногда альвеолярную вентиляцию при ИВЛ устанавливают с легкой гипервентиляцией (PetCO 2 4-5%, 30-38 мм рт.ст.).

    Преимущества нормовентиляции.

    При поддержании нормовентиляции гораздо легче распознается развитие критических ситуаций: нарушения альвеолярной вентиляции, кровообращения или метаболизма. Спонтанное дыхание восстанавливается более легко. Кроме того, восстановление в посленаркозном периоде происходит гораздо быстрее.

    Гипокапния и гипервентиляция.

    Уровень PetCO 2 ниже 4.5% (34 мм.рт.ст.) называется гипокапнией. При наркозе наиболее частым случаем гипокапнии является слишком высокая альвеолярная вентиляция (гипервентиляция).

    В после-наркозный период гипокапния при спонтанном дыхании пациента может быть результатом гипервентиляции вызванной страхом, болью или развивающимся шоком.

    Недостатки длительной гипервентиляции.

    К сожалению до сих пор распространенной практикой при ИВЛ является гипервентиляция пациента, которая по общепринятому мнению необходима для обеспечения адекватной оксигенации и даже для углубления наркоза. Однако современные лекарственные средства и способы мониторинга могут обеспечить лучшую оксигенация и анестезию без гипервентиляции "на всякий случай".

    Гипервентиляция имеет достаточно серьезные недостатки:

    вазоконстрикция, приводящая к снижению коронарного и церебрального кровотока;

    избыточный дыхательный алкалоз;

    угнетение дыхательных центров;

    Все эти факторы приводят к более трудному и продолжительному восстановлению в посленаркозный период.

    Гиперкапния и гиповентиляция.

    Превышение PetCO 2 уровня 6.0% (45 мм рт.ст. при Ратм=760) называется гиперкапнией. Наиболее распространенной причиной гиперкапнии при наркозе является недостаточность альвеолярной вентиляции (гиповентиляция), обусловленная низким уровнем дыхательного объема и (или) частоты дыхания. Кроме того, в закрытом контуре ИВЛ продолжительная гиперкапния может быть вызвана недостаточно полным поглощением СО 2 . На капнограмме это проявляется в том, что концентрация СО 2 в фазе вдоха не падает до нулевого уровня.

    В после-наркозный период продолжительная гиперкапния при спонтанном дыхании пациента может быть вызвана:

      остаточным нейромышечным блоком;

      медикаментозным подавлением дыхательных центров;

      болевым ограничением дыхания (особенно после операции на органах брюшной полости).

    Заметим, что гиперкапния может сопровождаться гипоксией, однако это не обязательно. Гипоксическое состояние наступает позже гиперкапнии при более низких значениях альвеолярной вентиляции.

    Дополнительными клиническими проявлениями гиперкапнии являются: тахикардия, появление испарины, повышение напряжения, головная боль, беспокойство. При продолжительной гиперкапнии возникают нежелательные побочные эффекты, такие как склонность к сердечной аритмии (при воздействии летучих анастетиков), увеличение сердечного выброса, увеличение внутричерепного давления, легочная вазоконстрикция и периферическая вазодилатация.

    6. Интерпретация капнограммы и тренда СО 2 .

    Мониторы СО 2 обычно отображают кривую изменения концентрации СО 2 каждого выдоха в реальном времени (капнограмму) и тренд PetCO 2 за 30 минут. Резкие изменения в выделении СО 2 хорошо заметны на капнограмме выдоха, в то время как постепенные изменения лучше заметны по тренду СО 2 .

    Нормальная капнограмма.

    Капнограмма здорового человека при искусственной вентиляции имеет нормальную форму. Любое значительное отклонение от нормальной формы капнограммы отражает нарушение в дыхательной системе, комплексные или механические нарушения в контуре ИВЛ.

    СО 2 резко перестал обнаруживаться.

    Если капнограмма имела нормальный вид, а затем резко оборвалась до нуля, за один выдох, наиболее вероятной причиной является нарушение герметичности контура вентиляции.

    Другой возможной причиной является полная обструкция дыхательного тракта, например вызванная перекручиванием (перегибом) интубационной трубки.

    Экспоненциальное падение PetCO 2 .

    Быстрое падение PetCO 2 за несколько дыхательных циклов может указывать на:

    • выраженную легочную эмболию
    • остановку сердца
    • значительное падение артериального давления (сильная кровопотеря)
    • выраженную гипервентиляцию (за счет ИВЛ).

    Ступенчатое падение уровня PetCO 2

    Наиболее вероятной причиной резкого (но не до нуля) падения уровня PetCO 2 является:

      Перемещение эндотрахеальной трубки в один из главных бронхов, (например при изменении положения пациента).

    • Внезапная частичная обструкция воздушных путей.
    Резкое возрастание PetCO 2 .

    Внезапно появившееся резкое, но плавно проходящее возрастание PetCO 2 , при концентрации СО 2 во вдыхаемом воздухе равной нулю, может быть вызвано внутривенным введением бикарбоната.

    Постепенное снижение PetCO 2 .

    Постепенное снижение PetCO 2 в течении нескольких минут может быть вызвано возрастанием минутной вентиляции, падением сердечного выброса, или ухудшением перфузии.

    Постепенное возрастание PetCO 2

    Постепенное возрастание PetCO 2 в течении нескольких минут может быть вызвано наступлением гиповентиляции, возрастанием скорости метаболизма в результате реакции пациента на стрессовое воздействие (боль, страх, повреждение и т.п.).

    Интубация пищевода.

    При интубации пищевода небольшая концентрация СО 2 может регистрироваться, благодаря ручной вентиляции через рот. После извлечения эндотрахеальной трубки и успешного ее введения некоторое время наблюдается повышенное значение PetCO 2 из-за накопления СО 2 при апноэ.

    Злокачественная гипертермия.

    Монитор СО 2 является быстродействующим индикатором злокачественной гипертермии. Быстрое возрастание скорости метаболизма легко обнаруживается по возрастанию PetCO 2 (СО 2 вдоха остается нулевым).

    Неполная мышечная релаксация.

    При неполной мышечная релаксация и недостаточной глубине наркоза у больного сохраняется собственное дыхание “работающее” против ИВЛ. Это неглубокое спонтанное дыхание вызывает провалы на капнограмме.

    Частичная обструкция дыхательных путей.

    Искаженная форма капнограммы (с медленной скоростью нарастания) может указывать на частичную обструкцию воздушных путей. Возможной причиной обструкции может быть:

      генерализованный бронхоспазм,

      слизь в дыхательных путях,

      перегиб эндотрахеальной трубки.

    Эффект возвратного дыхания.

    Возрастание концентрации СО 2 вдоха отражает эффект возвратного дыхания, заключающийся в том, что пациент вдыхает СО 2 выдохнутый им в замкнутый контур ИВЛ (неполное поглощение СО 2 в контуре прибора ИВЛ).

    Осцилляции капнограммы при сердечных сокращениях.

    При слабом дыхании (особенно во второй половине выдоха при крайне низких скоростях потока) сердечные сокращения могут проявляться на спадающем участке капнограммы. Осцилляции капнограммы происходят из-за движения сердца против диафрагмы, вызывающего прерывистый поток воздуха в сторону эндотрахеальной трубки.

    Восстановление естественного дыхания.

    В критической ситуации пациента обычно вручную вентилируют 100% кислородом. При этом намеренно допускают рост PetCO 2 , чтобы запустить спонтанное дыхание. После чего пациент с не нарушенной вентиляцией быстро достигает удовлетворительной альвеолярной вентиляции.

    Детская капнограмма.

    На рисунке приведена типичная капнограмма, получаемая при использовании системы дыхания Jakson-Rees в детской анестезии. Начальное возвратное дыхание вызвано недостаточной очисткой газового потока, что было в дальнейшем скорректировано. Отчетливое альвеолярное плато подтверждает, что регистрируется "реальное" значение PetCO2.

    Остановка сердца.

    Быстрый спад высоты капнограммы, при сохранении правильной формы показывает резкое падение легочной перфузии из-за слабого сердечного выброса (1). При сердечной асистолии СО 2 не транспортируется к альвеолам легочным кровотоком (2). Начинается эффективная кардиопульмональная реанимация (3). Восстановление кровотока подтверждается ростом капнограммы.

    Тренд СО 2 и капнограмма в реальном времени помогут Вам оценить всю процедуру и ее эффективность.

    7. Практическое руководство по СО 2 мониторингу.

    Мониторы CO 2 используют для измерения небольшие количества газа, который непрерывно забирается из воздушного тракта пациента (150 - 200 ml/min). Монитор с боковым отбором газа может использоваться со всеми типами контуров анестезии. Для мониторинга СО 2 при естественном дыхании используется носовой адаптер.

    Основное правило для размещения отборника газа.

    Размещайте адаптер отбора газа как можно ближе ко рту или носу пациента. Таким образом вы исключаете нежелательное “мертвое пространство” между местом отбора газа и пациентом, и измеренная концентрация PetCO 2 будет точнее соответствовать уровню альвеолярного СО 2 .

    Когда для нагрева и увлажнения вдыхаемого воздуха используются нагреватель и влагообменник, адаптер отбора газа должен быть расположен между эндотрахеальной трубкой и нагревателем, и влагообменником.

    В частности, когда используется закрытый контур вентиляции, адаптер отбора газа должен быть расположен возле эндотрахеальной трубки, чтобы предотвратить смешивание очищенного и выдохнутого газов.

    Соединительные трубки не должны очищаться после использования. Очистка химическими веществами может испортить внутреннюю поверхность трубок и увеличить сопротивление потоку газа.

    Стальные газоотборные адаптеры являются многоразовыми и могут быть стерилизованы, но пластиковые адаптеры предназначены только для одного пациента.

    Используйте только фирменные трубки и адаптеры. Применение других образцов может привести к неправильным измерениям.

    До использования воздуховодные трубки и адаптеры должны быть визуально проверены.

    Удаление газа с выхода монитора.

    Из выходного штуцера прибора газ выходит с достаточным давлением. Для предотвращения загрязнения воздуха палаты анестезионными газами, выходная трубка монитора должна подключаться к шлангу вытяжной вентиляции.

    Мониторинг при слабых воздушных потоках.

    Небольшие объемы газа, которые отбираются для мониторинга, обычно удаляются. Однако если в закрытой системе используются ультранизкие потоки, газ после анализа должен быть возвращен в ветвь выдоха дыхательного контура.

    8. СО 2 мониторинг в посленаркозный период.

    С помощью носового адаптера отбора газа СО 2 монитор позволяет непрерывно измерять PetCO 2 у пациента со спонтанным дыханием. При этом СО 2 мониторинг является прекрасным методом для выявления апноэ или угнетения дыхательных центров.

    Если пациент остается под искусственной вентиляцией СО 2 монитор позволяет Вам оценить необходимый уровень вентиляции пациента непрерывно и неинвазивно.

    Часто нарушение вентиляционно-перфузного отношения, вызванное легочной патологией проявляется в артериально-альвеолярном различии (аАДСО 2). Измерение концентрации СО 2 в артериальной крови и сравнение его с PetCO 2 дает оценку состояния легких. Причины изменения аАДСО 2 обязательно должны быть выяснены.

    Nunn JF. Applied Respiratory Physiology,2nd edition London: Butterworth,1977.

    Smalhout B,Kalenda Z. An Atlas of Capnography, 2nd edition. The Netherlands: Kerckedosh-Zeist,1981

    Kalenda Z. Mastering Ifrared Capnography. The Netherlands: Kerckebosh-Zeist,1989

    Paloheimo M, Valli M,Ahjopalo H. A Guide to CO2 Monitoring. Helsinki,Finland: Datex Instrumentarium Corp,1983

    Lindoff B, Brauer K. Klinick Gasanalys. Lund, Sweden: KF-Sigma,1988

    Lillie PE, Roberts JG. Garbon Dioxide Monitoring. Anaesth Intens Care 1988;16:41-44

    Salem MR. Hypercapnia, Hypocapnia and Hypoxemia. Seminars in Anesthesia 1987;3:202-15

    Swedlow DB. Capnometry and Capnograpny: The Anesthesia Disaster Early Warning System. Seminars in Anesthesia 1986;3:194-205

    Ward SA. The Capnogram: Scope and Limitations. Seminars in Anesthesia 1987;3:216-228

    Gravenstein N, Lampotang S, Beneken JEM. Factors influencing capnography in the Bain circuit. J Clin Monit 1985;1:6-10

    Badgwell JM et al. Fresh Gas Formulae do not accurately predict End-Tidal PCO2 in Pediatric Patients. Can J Anaesth 1988;35:6/581-6

    Lenz G, Kloss TH, Schorer R. Grundlagen und anwendungen der Kapnometrie. Anasthesie und Intensivmedizin 4/1985; vol 26: 133-141

    Приложение 1

      “ГАРВАРДСКИЙ СТАНДАРТ” минимального анестезиологического мониторинга (1985).

      Обязательное присутствие анестезиолога в течении всего времени проведения общей и региональной анестезии.

      Артериальное давление и частота пульса (каждые 5 минут).

      Электрокардиография.

      Постоянный мониторинг/вентиляция и гемодинамика/.

      для вентиляции: наблюдение за размерами дыхательнго мешка,аускультация дыхательных шумов, мониторинг вдыхаемых и выдыхаемых газов (PetCO2).

      для кровообращения: пальпация пульса, аускультация сердечных тонов, наблюдение за кривой артериального давления, пульсовая плетизмография или оксиметрия.

      Мониторинг разгерметизации дыхательного контура с звуковым сигналом.

      Кислородный анализатор с заданным уровнем тревоги по минимальной концентрации кислорода.

      Измерение температуры.

    Исследования и уровень углекислого газа в помещениях.


    В последние годы появились точные инфракрасные сенсоры для замера уровня углекислого газа в помещениях. Они входят в состав газоанализаторов и показывают концентрацию углекислого газа в режиме реального времени, поэтому их удобно ставить в жилых и общественных помещениях, школах и детских садах. Однако для того, чтобы от этих измерений была польза, нужны четкие нормы по уровню углекислого газа в помещениях. А их у нас пока нет. В странах Европы, США и Канаде, как правило, нормой считается 1000 ppm (0,1%). Да, в ближайшее время мы будем измерять уровень углекислого газа в минских квартирах и улицах.

    Квартиры.

    Повальное увлечение пластиковыми окнами, совершенно безрукие или неработающие вентиляционные системы усугубляют ситуацию. Я измерял в своей квартире: при плотно закрытых окнах и двери помещение объемом 16 кв. метров, уровень углекислого газа в помещении достигает 1500 ppm за полтора часа. Часто люди не обращают внимание на вытяжные вентиляционные отверстия в кухне и туалете. Некоторые даже замуровывают их при ремонте. Иногда сетка на вентиляционных отверстий настолько засорена, что практически останавливает работу вентиляции. Эти факторы способствуют ухудшению качества воздуха в квартире. Представьте, что вы и еще несколько человек находятся в одном небольшом замкнутом пространстве, активно двигаются, готовят кушать и т.д. Через какое-то время, если воздух не обновляется, в этом пространстве становится очень тяжело находиться, в воздухе сконцентрировано много загрязняющих веществ, в том числе углекислого газа

    Спальня.

    Для хорошего качества сна и здоровья человека необходимо, чтобы уровень СО2 в спальнях и детских комнатах был не выше 0,08%. Ученые Технологического Университета Делф (Delft University of Technology), Нидерланды, считают, что для сна важнее качественный воздух в спальне, чем продолжительность сна. Высокий уровень СО2 в спальнях может также усиливать храп.

    Углекислый газ в помещении, оборудованном кондиционером.

    Кондиционер дает поток холодного воздуха, перепада температур при выходе на улицу, бактерий, комфортно живущих в прохладе. Но, кроме этого, для экономии электроэнергии, при работе кондиционера закрывают все окна. При этом концентрация углекислого газа быстро достигает значительной величины и получается прохладный, но содержащий избыток углекислого газа воздух.

    Школы.

    Ещё более тревожные данные принесло масштабное международное исследование, проведённое по инициативе Европейского респираторного общества в школах Франции, Италии, Дании, Швеции и Норвегии. Оно показало, что в учебных заведениях, где концентрация CO2 в классах превышала 1000 ppm, подверженность учащихся заболеваниям респираторных органов повышалась в 2—3,5 раза. Правда, здесь необходимо сделать уточнение. Тем не менее исследователи проблемы пришли к заключению, что безопасный уровень CO2 в помещении не должен превышать 1000 ppm.

    А в школах Департамент здравоохранения США рекомендует поддерживать уровень углекислого газа не выше 600 ppm. Кроме того, существует ещё одна норма: воздух в помещениях по содержанию CO2 не должен отличаться от наружного более чем на 350 ppm. Теоретически обеспечить такое соотношение должны системы вентиляции и кондиционирования.

    Во многих школах проводится мониторинг качества воздуха по уровню углекислого газа. Конечно, не всегда и не везде этот уровень соответствует норме. Но в этом случае администрация школ обязана принять меры, чтобы улучшить положение. В Финляндии, например, школу, в классах которой обнаружен повышенный уровень углекислого газа, могут даже закрыть до тех пор, пока не будет налажена вентиляция.

    Офисы.

    В 2007 году доктор медицинских наук Ю. Д. Губернский (Институт экологии человека и гигиены окружающей среды им. А. Н. Сытина РАМН) и кандидат технических наук Е. О. Шилькрот (ОАО «ЦНИИПромзданий) провели исследования воздушной среды в московских офисах и на улицах Москвы. При том что измерения проводились далеко не в самые неблагополучные с точки зрения метеорологической обстановки дни, уровень углекислого газа на улицах составлял 1000 ppm. А в офисах концентрация CO2 достигала 2000 ppm и даже выше.


    Часто переделывают под офис помещения без правильно работающей вентиляции, в этом случае проблемы гарантированы. Особенно это касается маленьких переговорок, в которые набиваются по 20 человек. Если в переговорку на 20 квадратов сядут 20 человек — то за час концентрация углекислого газа вырастет уже до 10"000 ppm углекислого газа в помещении — а это уже уровень, при котором мозги перестают работать. Поэтому в маленьких переговорках без постоянно дующей вентиляции со свежим воздухом (не кондиционер!) допустимое время нахождения 5-10 человек без снижения когнитивных способностей — не более 10-20 минут.

    Для вентиляции на больших объектах — модно реализовывать управление мощностью измеряя концентрацию CO2 в отработанном воздухе — чтобы автоматически зря воздух не гонять, когда все из офиса ушли (на подогрев/охлаждение-то уходят огромные мощности).

    Фитнес-залы.

    Занимаясь в фитнес- или тренажерных залах вы также можете столкнуться с проблемой повышенного уровня углекислого газа, и вместо пользы нанесете вред своему организму. Это особенно актуально потому, что при физических нагрузках уровень концентрации углекислоты в крови и так повышается, и в плохо проветриваемом помещении человек почувствует признаки гиперкапнии (избыток углекислого газа).

    Вызванные гиперкапнией испарину, головную боль, головокружение и одышку списывают на физическое утомление и воспринимают чуть ли не как доказательство своей двигательной активности. На самом деле, это может говорить о переизбытке углекислого газа в артериальной крови. Длительная гиперкапния характеризуется расширением сосудов миокарда и головного мозга, может привести к росту кислотности крови, вторичному спазму кровеносных сосудов, замедлению сердечных сокращений.

    Что делать? Об этом я напишу в следующей статье.

    Для анализа обстановки у других комнатах

    Как оказалось, даже если оставить модуль в помещении без двери и с закрытым окном, как собственно в ближайшее время и происходит на моей кухне

    То наличие углекислого газа будет в норме исключительно при условии, что там никого не будет.

    На картинке простой пример:
    1 - жена готовила до этого момента на кухне и ушла
    2 - это количество СO2 после того как прошло 2 часа и на кухню никто не заходил, а окно соответсвенно было открыто, чтобы проветрить
    3 - это я пришёл с работы и сидел работал на кухне до 2 часов ночи, стрелка показывает на момент когда я ушёл спать. На графике видно, что после того как я ушёл без открытого окна концентрация СO2 не смогла упасть до нормы даже спустя 6 часов!
    4 - жена проснулась, зашла на кухню, быстро перекусила и убежала на работу
    5 - я проснулся и аккупировал кухню
    6 - на кухне огромное количество СO2 из-за рабочего, который делает полы в прихожей.....

    Данная аналитика даёт основание утверждать, что даже один человек может спокойно надышать даже в комнате без двери. Вы скажете "в чём проблема проветрить?", ответ простой - да в том что надо так проветривать каждый 1-2 часа, очень удобно да? Особенно когда спишь)

    Вот например как с большой концентрацией СO2 справляется Тион, это наша спальня и мы одновременно легли спать с супругой в точке 1 и соответственно тут же надвоих надышали более чем на 1000ppm, аппарат тут же это зафиксировал и начал равномерно запускать свежий воздух с улицы, чтобы значение упало до 750ppm

    Таким образом расположив данные датчики по комнатам можно контролировать концентрацию СO2 по всей квартире. Анализировать статистику кстати оказалось крайне увлекательно, вот как вы думаете что за всплеск был на верхнем графике? Ответ прост - жена гладила в комнате)))

    Ещё кстати важно не путать модуль и базовую станцию, визуально это конечно просто ибо они одинаковые

    Но функционал различается:

  • Базовая станция - анализирует влажность температуру и кол-во СO2 и на их основе отправляет команды на бризер (добавить свежего воздуха, подогреть его и тд)

  • Модуль - анализирует влажность температуру и кол-во СO2 и на их основе отправляет данные на базовую станцию, которая в свою очередь отправляет команды на бризер
  • Таким образом можно сэкономить 2000р и купить только модуль для второго Бризера, ну или использовать его как в моём случае чисто в виде датчика анализирующего ситуацию в помещении)

    В общем я прихожу к мысли, что теперь я такой хочу не только в спальне, но и в большой комнате - нереально крутая штука) Для скептиков сразу озвучу - расход электроэнергии за год одного такого устройства составляет смешные 394 квтч (спасибо victorborisov за информацию полученную опытным путём!)

    Как известно, причиной многих проблем с самочувствием и синдрома хронической усталости может быть переизбыток углекислого газа (CO2) в воздухе помещения (). Спасает от этого проветривание и вентиляция. Для того, чтобы понимать, насколько хорошо проветривается моя квартира, я купил прибор, измеряющий уровень углекислого газа в воздухе - CO2-монитор. Я взял модель с даталогером, это очень удобно для того, чтобы смотреть, как меняется уровень CO2 в течение суток.



    За последние 50 лет концентрация углекислого газа а атмосфере земли . Концентрация CO2 почти не зависит от места на земле - воздух хорошо перемешивается. Как это не удивительно, содержание CO2 в городском воздухе и в лесу отличается всего на 10 ppm. Считается, что концентрация до 700 ppm для человека не заметна и никак не влияет на его здоровье и самочувствие.

    Человек при дыхании выделяет много углекислого газа, поэтому в закрытом помещении концентрация CO2 очень быстро вырастает до 2000 ppm и выше.

    Существует два метода определения концентрации углекислого газа в воздухе - электрохимический (solid electrolyte) и метод недисперсионной инфракрасной спектрометрии (). Электрохимический метод менее точен и датчики, работающие на его основе, недолговечны.

    Производителей датчиков NDIR похоже всего два. Более известный - шведский SenseAir Сейчас SenseAir выпускает датчики K30. Датчики предыдущего поколения SensAir K22 сняты с производства, однако их сделали много и теперь продают относительно дёшево, что позволяет производить измерители CO2 по цене от $100.

    Именно таким датчиком, SensAir K22 и оснащён прибор . По неизвестным причинам когда этот прибор продают под оригинальным называнием он стоит аж $390, однако хитрый продавец GainExpress на Aliexpress и Ebay продаёт этот же прибор под названием «CO98 3-in1 CO2 Carbon Dioxide Desktop Datalogger Monitor Indoor Air Quality Temperature Relative Humidity RH 0~9999ppm Clock» за . Там-то я его и купил.

    Аналогичный прибор без даталогера и с менее точным датчиком влажности у того же продавца стоит .

    В комплекте - прибор, блок питания, кабель USB, диск с программой, инструкция, сертификат калибровки.

    Прибор показывает уровень CO2 в ppm, температуру и влажность с высокой точностью, время и дату. Кроме того показывается оценочное состояние уровня углекислого газа - Good, Normal или Poor. При желании по достижении уровня Poor прибор может начать пищать и показывать значок вентилятора - пора проветривать.

    В этом приборе используется точный ёмкостной датчик влажности (±3%RH at 25°C, 10~90% RH, ±5%RH at 25°C, <10% & >90% RH). В более дешёвых измерителях CO2 стоят датчики попроще, дающие большую ошибку на низких уровнях влажности.

    Прибор умеет показывать минимальные и максимальные значения всех трёх измеряемых параметров. В режиме даталогинга задаётся частота измерений (от 1 секунды до 5 часов). При долгом нажатии кнопки Log начинается запись значений в память. Во время записи мигает светодиод и основной дисплей (значение ppm постоянно сменяется надписью rec). Из-за этого мигания неудобно постоянно оставлять прибор в режиме логинга. заканчивается запись по долгому нажатию Esc. Каждая новая запись стирает предыдущую.

    После окончания записи данные можно передать в компьютер. Для этого сзади у прибора есть маленький круглый разъём, а в комплекте идёт кабель USB.

    Программа считывает данные с прибора и рисует вот такие графики.

    Можно включить отображение температуры и влажности, но тогда на экране будет вот такая мешанина.

    Датчик NDIR требует периодической калибровки, поэтому прибор автоматически калибруется раз в 7 дней. Минимальное значение CO2 принимается за 400 ppm (при этом за один раз калибровка может сдвигать показания не более, чем на 50 ppm). Для правильной работы прибора необходимо как минимум раз в неделю хорошо проветривать помещение (3-4 часа с открытым окном без людей в помещении). Этого достаточно, чтобы уровень CO2 в помещении стал таким же, как на улице и прибор правильно откалибровался.

    Прибор питается только от сети. Это связано с тем, что датчик NDIR потребляет довольно много. Прибор постоянно потребляет 30 mA, раз в секунду происходит импульс потребления 200 mA. Напряжение питания - 5 вольт. Я воспользовался повербанком для того, чтобы временно использовать прибор в качестве портативного, измеряя уровни CO2 в разных помещениях.

    Наличие этого прибора не только позволяет оценивать уровень CO2, но и очень стимулирует правильное и частое проветривание - смотришь на «страшные» показания прибора и тут же бежишь открывать окно.

    Несмотря на то, что прибор недёшев я заказал второй другой модели, чтобы в каждой комнате было по CO2-метру. Когда придёт, расскажу и о нём.

    Планирую купить +70 Добавить в избранное Обзор понравился +39 +86